论文部分内容阅读
本研究的主要目的是探寻实现表面下热物性分布测量的有效方法,实现其关键技术,实现空间分布面方向微米量级,深度方向亚微米量级的测量装置研究,为今后的空间分辨率纳米量级的扫描热显微镜打下基础。在实验上采用周期半导体激光为加热源,连续半导体激光为探测光,光学显微镜物镜聚光,应用稳态的光热反射探测技术得到相应于表面温度响应的周期反射信号,此系统主要包括周期加热激光、连续探测激光、显微镜物镜、硅光电探测器、锁相放大器、微米尺度二维扫描平台。在测量原理方面,通过对于层状结构试样热传导问题进行解析,引入了传输线理论及其使用方法。为有效利用传输线理论,对能量方程组进行了Laplace变换和Hankel变换。得到解析解后,在简单情况下可通过Laplace反变换和Hankel反变换得到表面温度在空间域和频域的分布,得到加热信号与反射信号的相位差及振幅比与结构的关系,确定结构测量原理。同时开发针对此问题的逆解析算法——模拟退火算法,并根据测量结果进行热物性(导热系数,界面热阻)的计算。对实验中被测参数进行了敏感度分析。实验测量与理论分析相结合,提出微尺度表面下结构及瞬态导热性能分布的测量原理及实验方法,建立一套5~10微米分辨率的实验室用测试系统。实现微米量级尺度简单结构复合试样的结构与导热性能分布的测量。在单点测量方面,通过对不同厚度SiO2薄膜导热系数测试的实验测量,发现98nm~322nm厚的SiO2薄膜的导热系数低于其体参数(1.38W·m-1·K-1),且与厚度有关,厚度越小,导热系数越小;Al/SiO2之间的界面热阻与SiO2薄膜的内部热阻数量级相当,不可忽略:SiO2/Si之间的界面热阻可以忽略。通过对表面下埋藏物的光热反射扫描试验,发现当热波在埋藏物中的热扩散长度与埋藏物的厚度相当时,探测异物存在的敏感度最高,由此可得到埋藏物热扩散系数的数量级,精确定量地分析其数值大小时,需要准确地测量泵浦/探测光斑的直径大小、精确的电动扫描平台和精确的三维热波扩散模型。根据数值模拟结果,讨论了埋藏物深度、埋藏物和基体的热浸透率比值对于表面下热结构测量的影响。