旋转光学微腔理论及其应用研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:liwanli14
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光在旋转体中的传播长久以来都是加速系统下电磁学的基本问题之一。通过谐振腔的旋转可以产生不同于传统光学系统的光传输和光散射现象,因此旋转腔作为一个物理内涵丰富、应用前景广阔的研究方向受到了普遍关注,例如光学陀螺仪在航天、航空和航海等重要领域被广泛使用。另一方面,光学微腔自从数十年前首次出现以来一直吸引着学者们的目光,从集成光子电路的相干光源到腔内量子力学,再到单光子发射器和生化传感器,微腔在光子器件的小型化和功能化方面发挥着重要的作用。旋转光学微腔不仅能够带来许多独特的光学性质和丰富的光学现象,也能给基于旋转腔器件的小型化指明方向,因此对于旋转光学微腔特性的研究具有重要的意义。本论文从旋转微腔中的理论入手,首先建立了旋转光学系统下含等效规范场因子的波动方程,并推导验证了旋转微腔中的模式频率分裂等基本效应。随后结合Mie散射理论研究了旋转微腔模式的多极子分量及远场特性。在应用方面,本文在二维(Twodimensional,2D)系统中对基于亚波长旋转双曲介质微腔的光隔离器以及基于旋转微腔间单向耦合的系统奇异点(Exceptional point,EP)进行了详细的理论与仿真研究。本论文的主要研究成果可以概括为以下几个方面:(1)从运动介质的电磁本构关系出发,通过将旋转微腔等效为一种双各向异性材料,发现旋转给微腔引入了一个角向的规范场,进而由该规范场严格推导了旋转微腔中等效磁场以及本征模式频率分裂的精确表达式。通过对有限元模型的有效改造并成功应用,使得COMSOL Multiphysics仿真软件可以用于对旋转微腔系统的全波仿真,仿真结果能够与解析结果很好匹配,而且该模型还可以推广到所有对旋转体系的研究中。(2)发现了旋转圆柱微腔中本征模式在发生频率分裂时伴随多极子分量的变化,提出了模式杂化理论模型描述和阐释了这个现象,并且研究了微腔旋转时多极子分量和远场分布之间的对应关系。最后,腔微扰理论也被应用在旋转微腔中验证了低转速下多极子分量的变化。(3)从双曲介质独特的色散关系出发,利用亚波长尺寸的旋转超材料双曲环腔与介质波导的耦合结构成功实现了光隔离器,得到了95%以上的光隔离度,并且从横向自旋匹配的角度阐述了基于亚波长旋转微腔实现光隔离的原因,最后分析了该光隔离器的实验可行性。(4)在旋转圆柱微腔和波导耦合系统中,研究了基于两个旋转微腔之间单向耦合导致的二阶EP,分析了微腔间距与模式振幅分布之间的对应变化关系。并通过放置相应数量完全相同的旋转微腔得到了任意阶EP。最后研究了在波导输入情况下EP给系统光隔离带来的影响。
其他文献
通过梳理淡水环境中微塑料分布现状及毒性效应研究进展,分析淡水环境中微塑料的丰度、类型、粒径、颜色、形状及毒性影响因素,并综述了微塑料对淡水环境生态系统中不同营养级生物的毒性效应。结果表明:微塑料在淡水水体中的分布受人为活动、水文特征、季节及微塑料类型等因素的影响,人类活动较多、水动力条件差及降水较多的水体中微塑料污染严重,不同密度的微塑料在环境介质中赋存存在差异;微塑料毒性与其浓度、粒径、类型密切
为了在施工前检核斜拉桥设计图纸,提高桥梁施工监控过程中的数据处理效率,利用BIM技术对复杂桥梁结构进行精细化建模,并基于施工监测BIM模型+winform应用程序创建可视化施工监测系统。结果表明:通过碰撞检查找出了设计图纸中存在的问题,减少了施工过程中的窝工返工;基于全桥BIM模型创建可视化施工监测模型,提高了桥梁施工监控过程的信息化与可视化水平,可为桥梁工程施工的顺利进行提供保障。
光电探测器是当前光电子产业核心元件之一,其主要功能是将光信号转换为可测量的电信号,在通讯转换、环境监测、视频成像等领域具有广泛的应用。随着信息技术的高速发展和半导体制造技术需求的提高,光电子器件趋向微型化、集成化、柔性化的发展态势日益明显。与此同时,由于受限于其物理性能和制造成本,基于传统半导体材料(例如硅基材料和III-V半导体)的摩尔定律即将失效。这时,新型的二维材料因具有原子级厚度、柔性和量
人类通过灰尘、空气颗粒物、饮用水和食物等多种介质日常接触到越来越多的高生产量化学品,这些化学品的健康危害日益突出。尤其是当前全球老龄化问题严重,老年人群健康备受关注。大量的离体实验和流行病学研究表明,曾被认为是安全的低剂量的环境污染物暴露,与人类生殖发育功能异常以及相关代谢疾病的发生有关。但多数研究都集中在个别化学品或各类化学品的健康风险评估上,对多污染物暴露的联合毒性健康效应或交互作用的影响了解
高功率掺镱光纤激光器以其独特的高效、灵活、可靠、光束质量好等特性受到广泛的关注。尤其是脉冲光纤激光器,由于其优异的高峰值功率,高单脉冲能量特性在军事、医疗、工业等领域发挥着不可替代的作用。本论文围绕高功率脉冲光纤激光器实现的关键技术,以大模场掺镱光纤和激光器结构、性能为主要研究对象,设计了超大模场双包层掺镱光纤,搭建了皮秒脉冲种子源、纳秒脉冲种子源和高功率纳秒脉冲放大平台,解决了高功率纳秒脉冲面临
癫痫是一种常见的神经系统疾病,癫痫发作由大脑神经元异常放电所致,中枢神经系统突然、反复和短暂的功能失常是癫痫发作的主要特征,中枢神经系统功能障碍可引发运动、意识、感觉和行为等不同程度的失常。大脑神经元异常放电与离子通道、囊泡运输和神经递质分泌、线粒体功能、免疫等密切相关。遗传因素是癫痫的重要病因,特别是儿童癫痫的重要病因。本论文对一个儿童癫痫家系进行遗传学研究,发现了儿童癫痫新的致病基因SCAMP
基于Ⅲ族氮化物材料的深紫外发光二极管(LED)具有体积小、低功耗、寿命长、波长可调和环境友好等优点,有望代替传统的紫外汞灯光源,在水、空气净化、表面杀菌、生物探测等领域发挥重要的作用。但是由于材料内部位错密度较高、极化效应强、横磁模(TM)模式出光困难和载流子注入效率低等问题,目前深紫外LED的光输出功率和量子效率还较低。本文围绕以上关键科学问题,深入研究了大失配应力下氮化物薄膜材料的表面演化规律
当前大型水轮发电机已成为我国电力系统的主要发电力量之一。大型发电机一旦发生故障将会带来巨大的经济损失和恶劣的社会影响,保障其安全可靠运行对电力系统的安全稳定具有重要意义。统计结果表明,定子绝缘故障是最常见的发电机故障,为此,国内外对发电机绝缘状态监测技术开展了长期研究,局部放电(Partial Discharge,PD)监测是目前最有效且应用最广泛的绝缘监测手段。发电机在运行过程中,其定子绕组绝缘
拓扑物理学是物理学的一个重要研究方向,它的一个研究目标是探索各种拓扑物态相,并且调控和利用物质的各种拓扑性质。早期这些研究大多集中在凝聚态系统中。随着拓扑物理学的发展,人们也开始在其它量子多体系统,特别是各种人工量子系统中开展与拓扑物理学相关的研究。这些人工量子系统大多拥有极高的可操控性,这为在其中探索新的量子现象提供了非常有利的条件。在人工量子系统中模拟各种拓扑结构以及拓扑现象最常用的方法之一是
目前,X射线探测应用已经渗透到人类活动的方方面面,近至安防安检、无损检测和医疗成像,远至天文观测、国防军工和高能物理等,不一而足。为了提高探测器的性能,对其核心部件闪烁体的开发尤为重要。近年来,得益于低成本、易制备、重元素组分、高效发光和弱自吸收等优势,铅基卤化物钙钛矿(如Cs Pb X3)在闪烁体领域博得了广泛关注。然而,铅的生理毒性和环境污染饱受诟病,为了继承卤化物钙钛矿的闪烁体优势并规避铅毒