论文部分内容阅读
为应对天然高品质高铝矾土矿物资源的匮乏对铝硅体系耐高温材料带来的严重挑战,针对目前非氧化物复相耐火材料Si3N4/Sialon基质存在合成原料成本高以及非氧化物复相耐火材料的高温烧成过程存在耗能高的突出问题,本论文利用天然铝硅矿物(特别是中低品位的铝矾土和高铝含量固废资源)通过碳热/铝热还原氮化等技术转型为非氧化物耐火原料,进行合成的非氧化物复合SiC系耐火材料免烧成技术和性能优化的研究,并利用过渡金属原位催化氮化反应制备新一代高性能Si3N4/Sialon结合SiC复相耐火材料,取得了一些重要的研究成果。论文系统研究了天然铝硅矿物原料配比、合成温度和还原剂加入量等工艺参数对非氧化物转型后材料物相组成、显微结构的影响规律。以天然石英、中低品位的铝矾土和菱镁矿等铝硅矿物以及煤矸石、高铝粉煤灰和铝灰等工业固体废弃物为原料,在1400℃-1600-C通过碳热/铝热还原氮化非氧化物转型合成得至β-Si3N4、β-Sialon、Ca-α-Sialon、镁铝尖晶石-刚玉-Sialon等材料;对比研究的化学纯原料在高温1700℃下非氧化物转型合成得至Ca-Dy-α-Sialon和Li-α-Sialon,为矿物转型后的非氧化物在耐火材料中的应用奠定了技术依据。过渡金属Fe、Co、Ni能够促进Si粉、Si-Al-Al2O3粉氮化形成Si3N4/β-Sialon及提高其纳米纤维含量,通过催化热化学气相沉积法制备得到一维α-Si3N4、Sialon纳米线/带。在1400℃氮化烧结后,当Co加入量为0.5%-1.0%时,制备的Si3N4/Sialon结合SiC试样的抗折强度能够提高50%-80%,达到60MPa。催化剂促进氮化反应结合Si3N4/Sialon-SiC复相材料强度提高的机制为“催化剂促进液相烧结”和“原位自生纤维(晶须)强化”机制,为免烧成耐火材料在高温使用条件下的高温在线烧结和强度获得提供理论基础。研究了低品位铝矾土和锆英石非氧化物转型后在免烧成耐火材料的应用,讨论了材料组成、结构、力学性能与高温抗渣侵蚀性能之间的关系,借鉴结晶学和矿物学理论探讨其抗渣侵蚀机理。低品位铝矾土和锆英石在1600℃非氧化物转型为Sialon-ZrN及其作为基质以酚醛树脂为结合剂制备获得Sialon-ZrN-SiC复相非氧化物免烧成耐火材料,常温强度由树脂提供,高温强度由材料的烧结而获得,基质中的Sialon柱状晶呈穿晶断裂有助于强度的提高。高炉渣对免烧成Sialon-ZrN-SiC复相耐火材料的侵蚀存在两个方面:耐火材料熔蚀到渣中的溶解以及熔渣在耐火材料内的渗透。本研究工作制备的免烧成的Sialon-ZrN-SiC耐火材料中ZrN氧化后形成的ZrO2,不与渣中的其他氧化物反应形成低熔点的物质,能够起到抵抗渣侵蚀的作用。