论文部分内容阅读
进行些年来随着网络的迅速发展,B2C电子商务发展异常迅速。但是,电子商务网站为用户提供了越来越多的选择同时,在海量的商品信息下,用户经常会迷失自己,无法找到自己所需要的商品。在电子商务日益激烈的竞争中,个性化推荐系统越来越受到企业的追捧,成为电子商务研究的重要领域,它可以模拟销售人员向顾客推荐商品,使顾客可以根据自己的喜好来进行物品的搜索,快速、有效的完成购物,增强网站的竞争力。本文通过对数据挖掘技术、Web挖掘技术、模糊聚类技术、Markov技术以及对目前电子商务网站的个性化推荐系统的发展趋势进行分析研究,构建了基于Web挖掘的电子商务个性化推荐系统。第一、介绍了Web挖掘技术在国内外研究现状,以及Web挖掘在电子商务个性化研究意义。给出了本文的主要研究内容和方法。第二、对数据挖掘进行概述,介绍了数据挖掘的应用与过程;对Web挖掘技术进行了详细介绍,包括电子商务中Web挖掘数据源,数据特点,以及Web挖掘面临的挑战。第三、分析了电子商务网站的个性化推荐技术,传统的个性化推荐技术和基于Web挖掘的个性化推荐技术。构建了基于Web挖掘的个性化推荐系统,从离线部分和在线部分析推荐系统的流程。第四、介绍了模糊聚类分析主要方法,针对Web数据特点提出应用动态直接聚类算法对Web日志数据进行用户聚类和页面聚类,并指出该算法的优越性。第五,采用模糊聚类与Markov链模型结合的方式,先对Web挖掘的数据进行模糊聚类,在每一类中应用Markov模型中进行预测。对基于聚类的Markov链模型和单Markov链模型在预测准确率、时间消耗上进行实验分析,验证了基于聚类的Markov链模型的优越性和有效性,在提高预测精度的同时降低了运算的时间开销和空间开销。最后对论文工作进行总结,结合研究中的不足之处提出有待进一步研究的展望。