论文部分内容阅读
发现于20世纪60年代的铝基非晶合金作为一种低密度材料拥有着较高的比强度,与传统晶态材料相比,呈现出长程无序、短程有序的原子排列特点,其内部不存在晶界、位错等较易引发失效的缺陷结构,表现出高硬度和优异的防腐、耐磨等性能,受到了国内外众多学者的广泛关注。受到非晶形成能力低的限制,目前多数铝基非晶合金都需要添加稀土元素以确保形成高非晶相合金,这增加了合金的制造成本且不利于工程应用推广。本文以简单的Al Ni Ti三元体系为基础,完成了材料仿真计算、组分设计、涂层制备及性能表征等系统性的研究工作,其主要工作包括:设计不同Ti含量的Al Ni Ti(Al90-xNi10Tix,x=0,3,6,9和12)三元原子结构模型,利用VASP软件进行第一性原理仿真计算。结果表明:根据原子原胞体积随弛豫平衡温度的变化拐点,拟合玻璃转变温度,其中Al81Ni10Ti9的玻璃转变温度最高,达到580℃;根据能够反映原子扩散速率的均方位移可知,随着Ti含量的增加,各原子的扩散速率降低,这符合原子扩散速率与质量负相关的原则,说明Ti含量的变化没有引起原子明显的协同移动。Ti含量的变化能够引起径向分布函数第一峰形成不同程度的左肩峰,其主要原因是Ti含量变化引起Ni-Al和Ti-Al偏径向分布函数的峰位置、强度改变;对配位数和化学短程有序度分析可知,Al-Ti亲和力高于Al-Ni亲和力,这解释了Al Ni Ti非晶合金能够优先析出Al3Ti相的原因;对不同原子为中心的Voronoi多面体(VPs)进行统计可知:在Al中心的VPs中,有利于增加非晶形成能力的<0,0,12,0>二十面体占比很少,多数为变形二十面体;Ni中心的VPs中没有二十面体结构;Ti原子为中心的VPs中,<0,0,12,0>占比较高,但由于Ti原子含量有限,对合金的非晶形成能力并没有明显提升。对合金进行五次对称性分析可知,Ti含量为9 at.%和12 at.%时,玻璃化倾向更高。整体分析Ti含量对非晶形成能力的影响可知,从动力学和成分起伏角度,认为Al78Ni10Ti12具有更好的GFA;从原子局部结构稳定性角度,认为Al81Ni10Ti9具有更好的GFA。针对铝基非晶合金,尤其是不含稀土元素的铝基非晶合金的Tg无法测量的问题,设计评估了不同组分合金非晶形成能力的实验方法。通过实验方法总结归纳了Ti、Ni含量变化对合金非晶形成能力的变化规律,说明了仿真结果的可靠性,认为具有高非晶含量的合金组分为Al81Ni10Ti9。根据Al81Ni10Ti9非晶合金薄带的DSC曲线,设定不同温度对薄带进行退火处理,根据XRD表征确定合金薄带在不同退火工艺处理后的析出相。根据不同相组成的薄带的硬度测试结果可知,α-Al纳米晶对合金有硬化作用,最高硬度达到625 HV100。基于Al81Ni10Ti9合金组分,通过真空气雾化方法制备的粉末,由于铝基合金自身的低非晶形成能力和气雾化过程中的低冷却速率,导致粉末中不含非晶相。对比等离子喷涂(PS),火焰喷涂(FS)和超音速火焰喷涂(HVAF)制备的合金涂层可知:等离子喷涂工艺的高焰流,确保粉末在喷涂中实现重熔后再骤冷的过程,借助于热喷涂过程的高冷却速率,实现非晶相的形成,其非晶含量可达49.76%;等离子喷涂工艺的高焰流速度,确保熔滴沉积后涂层的致密性,其孔隙率为3.1%,略高于超音速火焰喷涂涂层,明显低于火焰喷涂涂层;致密结构和高非晶相确保了等离子喷涂铝基非晶涂层具有较高的硬度,可达422 HV100;对6061铝合金、等离子喷涂涂层、火焰喷涂涂层和超音速火焰喷涂涂层进行摩擦磨损测试,可知等离子喷涂涂层具有更高的耐磨性能,其磨损速率是6061铝合金的1/4,其磨损机理主要是剥层磨损并伴随氧化磨损。设计真空封孔工艺对等离子喷涂涂层进行后处理,用环氧树脂填充涂层的孔隙,减少结构缺陷对涂层耐腐蚀性能的危害。对比6061铝合金、封孔涂层、未封孔涂层的动电位极化曲线可知,腐蚀电流密度:6061铝合金>未封孔涂层>封孔涂层;腐蚀电位:封孔涂层>未封孔涂层>6061铝合金。说明非晶合金材料本身具有更高的耐腐蚀性能,这得益于非晶相的均匀性和纳米晶的高钝化活性,另外涂层封孔后降低了缺陷处腐蚀介质的接触,进一步提升了涂层的耐腐蚀性能。对比6061铝合金、封孔涂层、未封孔涂层在不同浸泡腐蚀时间的交流阻抗谱图可知:随着侵蚀时间的增加,试样的阻抗均表现为先迅速降低随后平缓;封孔样品初期的阻抗明显高于6061铝合金,说明封孔对于样品初期的耐腐蚀性能提高明显,但由于封孔深度受限,长期侵蚀条件下,封孔处理的作用有所减弱;根据盐雾腐蚀结果,可以更直观地说明封孔涂层在短时间(200 h内)腐蚀条件下,比6061铝合金更优异的耐腐蚀性能。结合SEM形貌分析和XPS腐蚀产物分析可知:由于涂层中具有较低腐蚀电位的晶体相容易集中到孔隙附近,因此孔隙处更容易腐蚀,主要以孔蚀为主;涂层中的无缺陷区域,由于非晶相的均匀性以及纳米晶的高活性,耐腐蚀性能提高,其腐蚀形式多以开裂为主;另外,涂层中的Ti在腐蚀过程中可以通过Al3+空位扩散到涂层外层,提高钝化膜的稳定性并参与腐蚀反应。