论文部分内容阅读
介孔材料自被发现以来,就以其高的比表面积、大的孔容、有序的介观结构以及连续可调的介孔孔道等结构特性,在电化学、催化、吸附、分离以及生物医药等领域已经展现出巨大的发展潜力,而这一切都与介孔材料的介观结构和形貌是密不可分的,本论文将主要以介孔二氧化硅为例,通过归纳总结介孔材料所涉及到的理论知识,开展动态自组装法制备具有复杂结构的介孔二氧化硅的研究,并利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X-射线衍射(XRD)以及氮气吸脱附等表征手段,探究所合成介孔材料的介观结构、形貌以及形成机理。本论文将主要分以下三个部分:(1)空心的纳米结构又被称为纳米胶囊,已经成为药物递送和控制释放应用中的理想选择。为了增强其对生物宿主的粘附和渗透能力,达到有效地进行药物递送的目的,在空心结构上的颗粒上构建多足结构,以形成蒺藜状的复杂结构,已被证明是有效的策略。然而,由于在纳米尺度上需要同时控制分支状多足的形态、空心结构和介观相结构,因此合成具有挑战性。在这里,提出了通过合理构建局部微环境来实现区域选择性控制的策略,实现了在聚合物球体上生长有序介孔二氧化硅的分支结构。通过煅烧除去这些有机模板(聚合物球和表面活性剂)后,得到多足介孔二氧化硅空心球。有序的管状介孔沿着六棱柱状足的中心轴方向排列,连接空心球的内部和外部。跟踪实验结果显示,其生长过程类似于生物硅化的演变生长,多足逐步从聚合物球表面生长出来。研究发现,可以通过调节试剂用量或者合成温度等多个途径间接地控制从薄层的缝隙或薄弱部分扩散出羧基/质子的多少,实现对最终产品多足的数量从一个到多个的精细调控,这为精确控制合成具有先进功能的各种复杂纳米结构开辟了广阔的空间。(2)介孔二氧化硅材料可以作为载体用于药物的释放,并能够实现体内的自发降解。其中,介孔二氧化硅空心球以其低密度、大的空心结构以及高的比表面积在这方面表现的尤为突出。本论文采用了相对经济环保的高压CO2气体产生的气泡作为空心球的模板,通过阴离子表面活性剂、硅烷偶联剂以及无机前体的协同作用来原位稳定包裹住始终处于动态变化中的CO2气泡,制备了球壳较薄、粒径相对集中、分散性良好以及孔道表面负载均匀氨基的介孔二氧化硅空心球。基于所合成材料的结构和功能特性,将其应用于CO2的高效吸附,药物的快速释放以及Knoevenagel缩聚反应的高效催化。(3)由于化石燃料的过度燃烧,这造成了在全球范围内温室气体CO2排放总量的大幅度上升且难以管控的局面,引发出的一系列生态环境问题,在这多方压力下,CO2气体的捕获、储存和利用显得十分迫切,本章节对此提出了多种针对CO2直接或者间接利用的方法。在材料合成上,首次使用在水溶液中呈现弱酸性的CO2气体代替传统意义上的强酸作为酸性调节剂,来调节阴离子表面活性剂与硅烷偶联剂之间的相互作用,通过共结构导向的方法合成了具有二维六方有序介孔孔道的氨基功能化的介孔二氧化硅纳米颗粒。所制备的介孔材料吸附剂不仅具有传统介孔材料的有序介观结构、高的比表面积和大的孔体积,而且提高了材料内介孔孔道表面的氨基负载量。在应用方面,首先将其用于对CO2吸附。测试结果表明,合成的吸附剂不但可以高效的吸附CO2,而且具有很好的稳定性。接着利用孔道表面均匀分布的氨基将材料其应用于催化Knoevenagel缩聚反应,也表现出很好的催化效果。