论文部分内容阅读
大螺距螺纹件作为数控龙门移动立式车铣床和数控大型多工位压力机的关键部件,其车削加工时具有大进给、大切深和低转速的特点,由此导致切削速度与进给速度匹配不合理,切削力倍增,进而造成工艺系统发生强烈振动。非线性多强场耦合作用下,刀具与工件之间的颤振改变刀-工摩擦副之间的接触关系,导致其摩擦学系统呈现动态变化,进而造成刀具磨损形态发生改变,并致使大螺距螺杆车削过程中的稳定性难以得到保证,无法完成大螺距螺纹面的高品质加工,成为大螺距螺杆切削效能大幅度提高的瓶颈。本文针对车削加工大螺距螺杆存在的上述问题,进行车削大螺距螺纹刀具振动与磨损耦合机制及其切削稳定性研究。通过研究大螺距螺杆车削加工工艺系统动力学特性,揭示切削刀具振动与磨损交互作用规律和耦合机制;进一步结合工件加工精度和表面质量预测,提出切削稳定性控制方法。对确保大螺距螺纹件高品质加工,完善车削大螺距螺纹刀具设计理论,推动高效切削技术的发展具有重要的理论意义和工程应用价值。主要内容包括:基于“广义动力学空间”概念,扩大动力学研究的空间尺度,将整个切削加工系统作为一个整体进行研究。考虑振动造成刀具实际工作角度的变化和“类再生效应”造成瞬时切削层厚度的变化,构建大螺距螺杆瞬时切削力模型;构建大螺距螺杆车削工艺系统动力学模型,表征工艺系统在切削力及机床主轴等驱动机构不平衡运转载荷激励下的动力学行为;考虑刀具空间位置对工艺系统的动态变化影响,构建大螺距螺杆车削工艺系统刚度场和模态场仿真模型;通过所建立机床-刀具、机床-工件的频响函数,叠加机床激励和切削力对大螺距螺纹车削加工系统的影响,构建基于广义动力学空间大螺距螺纹车削工艺系统综合频响模型。车削大螺距螺纹刀具磨损的摩擦学行为与其动力学行为紧密联系。通过对刀具振动信号和刀具磨损量在时间历程下轮廓曲线进行互相关分析,建立二者非线性关系方程;通过振动作用下的大螺距螺纹车削仿真模型,对振动振频和振幅影响温度场、应力场和刀具磨损量的成因进行分析;研究车削大螺距螺纹刀具表面振动磨损形态、磨损量演变过程与切削力和刀具振动交互作用影响规律,构建振动影响下的大螺距螺纹车削刀具磨损模型,阐明刀具振动磨损耦合机制;通过对刃口结构和切削参数的优选,抑制振动对磨损的影响,提出刃口刃形保持性控制方法。从而实现刃口磨损均匀,提高刀具寿命。大螺距螺纹面的加工精度和表面质量直接影响着大螺距螺杆的使役性能。建立在工件坐标系下三维移动力作用的大螺距螺杆振动力学模型;建立了工件自激和刀-工耦合振动下的工件加工精度预测模型,分析了振动对螺杆大径、小径及左、右螺纹面牙型半角精度的影响程度;建立刀-工耦合振动下的表面形貌预测模型,分析了振动对工件表面轮廓线波形的影响规律;构建表面粗糙度与振动加速度信号特征值的关系方程,表征切削过程中振动对表面形貌的影响机制;通过大螺距螺纹件专用跟刀架来提高工件整体的刚性,抑制工件振动,从而有效提高工件加工精度和表面质量。切削稳定性能够保证大螺距螺杆高品质创成加工。通过对大螺距螺杆车削加工工艺路线的合理规划,提出车削大螺距螺杆加工工序;采用人工蜂群算法对精加工切削参数进行多目标优化,并基于动力学稳定域和瞬时切削力模型进行切削参数优选;以机械加工工艺路线(加工工序、加工机床、加工刀具和进刀方向)、切削参数和加工精度及加工表面一致性为优化变量,以车削稳定性为优化目标,建立大螺距螺杆车削稳定性控制模型,进行大螺距螺纹稳定性实验,验证大螺距螺纹车削工艺系统控制方法可靠性。