论文部分内容阅读
现代流程工业日趋规模化、复杂化和集成化。工业过程长期安全、稳定、高效运行是企业实现经济效益的关键。流程工业中绝大部分被控过程具有非线性特性,传统的线性方法通常假设工业过程运行在某一稳定工作点附近,并且变量之间相关性关系在窄窗口内近似为线性的。面向流程工业非线性过程监测与故障诊断方法的研究是自动控制领域中一个十分重要的课题。近二十年来,非线性过程监测主要有基于核方法、局部模型和神经网络等解决途径,但面向系统规模庞大、测量变量与操作工序众多、变量关联关系复杂的流程工业过程,传统的方法较难获取完备的监测与诊断效果。本文主要研究内容包括以下几个方面:(1)针对流程工业非线性过程建模复杂、故障变量辨识难的问题,提出了基于变分自编码器的过程监测与故障隔离一体化解决方案。首先,利用变分自编码器构建非线性过程概率模型,将复杂分布的过程数据映射到潜变量空间,使其服从高斯分布;其次,基于变分自编码器模型设计了基于边缘联合概率密度的监测统计量,实现了非线性过程监测;然后,采用缺失值重构思想,基于重构贡献分析实现了非线性过程故障隔离,并针对多个故障相关变量影响导致的拖尾效应问题,采用分支定界技术实现故障相关变量集的快速搜索,提升非线性过程故障隔离性能。最后,使用TE过程和带钢热连轧过程数据对所提算法的监测与诊断性能进行了验证。(2)针对流程工业多操作工况导致的非线性问题,提出了基于高斯混合变分自编码器的多工况过程监测方法。首先,变分自编码器中引入高斯混合模型,构建一个高斯混合变分自编码器,将多工况的非线性过程数据映射到潜变量空间,使其每个工况的潜变量投影均近似服从高斯分布;然后,利用潜变量投影在每个高斯分量的偏离程度,以及模型提供的重构概率分布构建监测统计量,实现多工况过程的非线性过程监测。最后,通过TE过程和带钢热连轧过程数据验证了该算法的有效性。(3)针对流程工业非线性过程质量监测问题,提出了联合深度变分信息瓶颈和变分自编码器的质量监测方法。首先,通过构建深度变分信息瓶颈和变分自编码器的联合模型,实现质量相关和无关的潜变量分解,并采用理论分析证明了上述联合模型分解的有效性;然后,利用联合模型提供的潜变量分布和重构概率分布建立了监测统计量,从而实现质量相关故障的检测;最后,通过数值仿真案例和带钢热连轧案例验证了所提算法的有效性。(4)针对流程工业全流程非线性建模和过程监测问题,提出了基于条件变分自编码器的全流程过程监测方法。首先,以流程工业中常见的串联型过程为研究对象,构建分布式变分循环自编码器模型,以提取工序间和工序内的时空特征;其次,使用深度支持向量数据描述方法对局部特征信息进行融合,提取全局特征信息;然后,基于构建的分布式模型设计局部监测统计量,并用融合的特征构建全局监测统计量,从而实现全流程的全局-局部的过程监测方法;最后,利用带钢热连轧实际工程案例对所提算法进行了验证。(5)针对流程工业非线性过程监测、故障隔离、故障辨识一体化解决难的问题,提出了一个深度因果图建模方法及其一体化过程监测与故障诊断方案。首先,提出了一种深度因果图建模方法,构建描述变量间因果关系的有向图结构;然后,利用深度因果图模型提供的变量条件概率构建监测统计量和贡献度指标,实现故障的检测和隔离,并使用因果有向图结构辨识故障的根源和传播路径;最后,通过TE过程验证所提算法的可行性和有效性。