单层FeSe/SrTiO3薄膜的角分辨光电子能谱研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:ken142560
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生长在SrTiO3衬底上的单层FeSe薄膜(FeSe/STO)由于其本身独特的电子结构,以及可能是铁基高温超导体中最高超导转变温度的记录创造者,而持续的受到研究关注。单层FeSe/STO薄膜是结构最简单的铁基高温超导体之一,同时其超导转变温度相对于块材FeSe的超导转变温度有很大的提高,所以研究单层FeSe/STO薄膜对于解决铁基超导的机理以及探索更高超导转变温度的超导体都具有十分重要的意义。本论文主要介绍利用分子束外延技术生长了超高质量单层FeSe/STO薄膜,并通过高分辨角分辨光电子能谱技术对单层FeSe/STO薄膜的电子结构和超导电性进行了系统的研究。论文主要分为以下几个部分:1.简要回顾了超导的发现和发展历史,介绍了铁基高温超导体的研究进展,详细介绍了单层FeSe/STO薄膜的研究进展,阐述了论文研究的出发点。2.介绍了角分辨光电子能谱和自旋分辨角分辨光电子能谱的原理、设备以及实验流程。3.介绍了用于薄膜生长的分子束外延生长技术和用于薄膜表征的扫描隧道显微镜的原理,详细介绍了使用分子束外延装置制备超高质量单层FeSe/STO薄膜的过程。4.利用分子束外延技术成功制备了不含多余Fe的单层FeSe薄膜,利用高分辨角分辨光电子能谱仪对该薄膜做了系统研究。实验结果表明,单层FeSe/STO薄膜的母相是绝缘体。这是铁基超导体中母体化合物是绝缘体的第一个明确案例。进一步研究发现,单层FeSe/STO薄膜从绝缘相随掺杂演化到超导态的过程,与铜氧化物高温超导体中的母体Mott绝缘体掺杂演化过程非常相似。这些发现为理解单层FeSe/STO薄膜的高超导转变温度提供了关键信息。5.制备了高质量的超导单层FeSe/STO薄膜,在高分辨角分辨光电子能谱测量中,首次观察到由超导诱导的强烈的Bogoliubov回弯能带,该回弯能带甚至可以延伸到费米能下100 meV。强烈的Bogoliubov回弯能带为研究单层FeSe/STO薄膜的超导配对温度提供了一个全新而十分有效的标准。观测到Bogoliubov回弯能带消失的温度高达83K,为单层FeSe/STO薄膜在83 K存在超导配对提供了直接的光谱证据。通过分析单层FeSe/STO薄膜在超导配对温区的谱学行为,发现超导配对的温区可以进一步划分为64-83 K和64 K以下两个区域。这些结果表明,要么是在铁基超导体中可以实现83 K的超导转变温度,要么在单层FeSe/STO薄膜中存在超导涨落导致的赝能隙,64-83 K区域可能存在超导涨落行为,而低于64 K区域则是配对电子发生长程相干后真正进入超导态。无论是哪种可能性,都对铁基超导体的研究有着十分重要的意义。6.介绍一种可以实现在超高真空条件下拆装并转移实验样品的发明专利。
其他文献
合金材料在使用过程中,会不可避免地因各种形式的失效而产生损耗。常见的失效形式包括断裂失效、变形失效、磨损失效和腐蚀失效等。高熵合金由于其设计理念突破了传统合金的设计思路而受到广泛的关注。一些高熵合金表现出的高强度、高塑性、高硬度和高耐磨性等特点,使其成为凝聚态物理和材料科学研究中新的研究热点。但是目前对高熵合金的研究主要集中于力学性能和相的形成及预测方面,关于高熵合金的其它失效行为的关注较少。本文
磁场普遍存在于天文环境中,它与广泛存在于宇宙空间的等离子体(如恒星、星云、星际介质、吸积盘和喷流等)相互作用,产生了丰富的宇宙磁流体现象。从地球物理到太阳物理,从河外星系到星际空间,人们对天文现象的探索激励着磁流体力学的发展和完善。实验室天体物理让人们在实验室环境中即可产生高能量密度物理条件下的极端现象,用于模拟宇宙空间发生的天文现象,尤其对于超过天文观测极限的天文现象是很好的补充。另一方面,实验
高能粒子加速器及高亮度辐射源在基础科学研究、工业生产测试及医疗健康等领域的应用日益广泛,在国民生活中也发挥着越来越不可替代的作用,应用需求持续增强。伴随着超强激光技术的发展,激光等离子体加速及辐射源的相关研究日趋成熟,并取得了一系列里程碑式的进展;由于其加速梯度高、脉宽短、亮度高、源尺寸小等特点,被认为在高能电子加速器、先进X光光源的小型化甚至普及化方面将发挥重要作用。本文介绍了作者攻读博士学位期
自旋流和电荷流之间的相互转化一直以来都是自旋电子学研究的重要方向。电荷流产生的自旋流可以实现对磁性材料中磁矩进行有效操控,例如,利用自旋转移力矩或自旋轨道力矩驱动的磁矩进动、畴壁位移、磁矩反转等;自旋流产生的电荷流可以运用到自旋流和磁状态的探测、太赫兹波的发射等,相关现象都是自旋电子器件应用的基础。目前研究的非磁材料主要有两类可以有效地实现自旋和电荷流的转化,一类是重金属材料,另一类是拓扑绝缘体材
近年来,钙钛矿材料因其优异的光电性能而引起了广泛的关注。在光伏领域取得巨大成功的同时,它们在其它领域(如光电检测器,发光二极管和场效应晶体管)也很有前途。虽然上述研究是基于不同的器件结构展开的,但是制备高结晶质量和低缺陷态密度的钙钛矿薄膜均是获得高性能器件的关键。因此,进一步发展钙钛矿材料的成膜工艺及改善钙钛矿薄膜的结晶质量是值得加以思考和关注的问题。本文的工作集中在通过对钙钛矿吸收层薄膜进行体相
近年来,锂离子电池已经迎来了其产业和应用发展的巅峰期,在人类生活中的各个领域获得了广泛的应用,且其生产规模还在不断扩大,这会引起锂资源的巨大消耗和价格上涨。如果锂离子电池再拓展应用至储能领域,这种现象必将更加严重。经过近三十年的发展,现在锂离子电池的技术迭代和成本下降趋势大大放缓,发展空间已较为有限。因此必须要寻找后锂离子电池时代的替代或备选储能技术。在此背景下,与锂离子电池具有类似工作原理且作为
由于传统化石能源不断消耗带来的温室效应以及环境污染等问题日益严重,可再生清洁能源(如太阳能和风能)迎来新的机遇与挑战。然而可再生能源存在间歇性和区域性缺陷,需要大规模储能系统的辅助,对可持续、低成本的储能技术提出了更高的要求。由于钠资源储量丰富,钠离子电池近年来引发了越来越多的关注,在规模储能领域被认为是锂离子电池的有益补充。然而,目前仍旧缺少具有优良综合性能的负极材料来进一步提高钠离子电池的能量
脉冲激光沉积(Pulsed LASER Deposition,PLD)技术为得到多功能性钙钛矿材料奠定了坚实的基础。由于激光法制备生长中衬底导致的结构变化可能导致多样的电子排布,如电荷有序、轨道有序等。且该结构变化是由于钙钛矿材料本征晶格常数与衬底晶格常数失配产生的应变而造成。因此,可以通过调控此应变来实现调控钙钛矿的结构和性能,并拓展该材料在相关领域的应用。此外,钙钛矿稀土金属镍氧化物作为重要的
作为第三代半导体材料,氮化铝(AlN)和六方氮化硼(hBN)在光电子和微电子领域具有极大的应用前景。但是由于其独特的物理化学性质,大尺寸、高质量的AlN和hBN单晶生长仍然是具有挑战性的工作。物理气相传输法作为目前AlN单晶最有效的生长方法存在很多技术困境,主要包括:控温困难、原料缩颈、扩径困难、生长速度缓慢、二次形核等。针对上述生长难点,本论文开展了助熔剂法和金属铝气相传输法生长AlN晶体的研究
传统的经典理论认为,半导体多量子阱结构中存在很强的量子限制效应,可以有效地对载流子进行捕获和限制,因此多量子阱结构被广泛的应用于制备电光转换器件,如发光二极管、激光器等;但是,多量子阱结构对于光激发下直接跃迁产生的载流子的强限制作用,限制了多量子阱结构在光电转换领域的应用。然而最近的实验研究发现,PIN结构(多量子阱结构被置于PN结中,以下统称为PIN结构)中的光生载流子存在强烈的逃逸现象。不论是