论文部分内容阅读
随着太空探索的深入,失效/退役的航天器逐年增加。由于失去姿态控制能力,在系统残余角动量的影响下,失效/退役航天器将出现旋转运动。自旋航天器不仅浪费了宝贵的轨道空间资源,还威胁着其他在轨航天器的安全,故自旋航天器的捕获需求日益迫切。空间双臂机器人可以实现对目标的精确控制与操作,有利于目标航天器的回收。但在捕获过程中,机械臂会与目标发生直接的物理接触,碰撞产生的接触力可能导致机械臂抖动或变形,还可能使目标远离捕获区域,导致捕获操作失败。考虑到目标处于自旋状态,成功捕获目标的关键是利用接触力实现其角速度的衰减。因此,在自旋目标捕获过程中,空间双臂机器人系统需要具备控制接触力的能力,即协调操作柔顺控制能力。本文的研究内容来源于航天院外协项目“空间机械臂悬停飞行器捕获控制系统研制”。本文以自由漂浮空间双臂机器人为研究对象,针对自旋目标捕获任务,开展空间双臂机器人动力学建模、不同接触模式下协调操作柔顺控制策略设计、基座姿态无扰控制优化等关键技术研究,并分别通过数值仿真和实验验证相关理论的有效性及实用性。主要研究工作如下:首先,针对机械臂末端与自旋目标之间发生固定接触的情况,研究空间双臂机器人协调操作柔顺控制方法。建立空间双臂机器人动力学模型,通过消除基座加速度项,实现关节运动和基座运动的解耦。结合目标动力学方程,构建空间双臂机器人协调操作系统的统一动力学模型,为基于动力学模型的柔顺控制提供基础。基于统一动力学模型,设计面向目标的空间双臂机器人阻抗控制算法,实现对接触力的精确控制,以保证目标转动的可控衰减。其次,针对机械臂末端与自旋目标之间发生滑动接触的情况,研究空间双臂机器人协调操作柔顺控制方法。基于LuGre模型,建立机械臂和自旋目标之间的摩擦接触动力学模型,完成接触力和相对运动的具体推导,为滑动接触情况下的柔顺控制提供基础。基于统一动力学模型及摩擦接触动力学模型,设计面向目标的空间双臂机器人混合阻抗控制算法,实现对法向正压力和切向摩擦力的解耦,保证空间双臂机器人双臂末端与目标之间具有柔顺性。针对捕获系统参数未确知情况,设计空间双臂机器人RBF网络(径向基神经网络)自适应控制算法,补偿由于系统参数误差引起的控制误差,保证捕获系统在参数未确知情况下的控制精度。然后,面向微重力情况下的目标捕获任务,研究考虑基座姿态无扰的空间双臂机器人柔顺控制优化方法。在不考虑外力的情况下,建立协调操作系统(带操作物)的线动量/角动量守恒方程,通过消除目标运动,构建空间双臂机器人基座运动方程。结合广义雅可比矩阵,完成对广义雅可比矩阵的扩维,同时实现对机械臂末端运动规律的跟踪和基座姿态的调整。建立零空间雅克比矩阵,利用关节自运动特性,采用基于粒子群算法的全局优化方法,在不影响自旋目标捕获操作效果的前提下,实现空间双臂机器人关节驱动力矩的优化。最后,针对空间双臂机器人捕获自旋目标的协调操作柔顺控制方法开展实验研究。改造微重力气浮实验平台,设计滑动接触模式下的空间双臂机器人捕获自旋目标的实验方案。对比分析实验数据,验证所提出相关算法的有效性与实用性。