论文部分内容阅读
混合显隐式时域有限差分(Hybrid Explicit Implicit Finite-Difference Time-Domain,HIE-FDTD)方法在计算电磁学研究无耗介质的电磁问题中已经获得广泛的应用。结合显式和隐式方法的HIE-FDTD由于退化了 FDTD的稳定性条件,在计算单一方向上具有紧密尺寸结构的电磁问题时具有更高的计算效率。但是现有的HIE-FDTD方法只适用于无耗介质,不适用于自然界中广泛存在的有耗介质,所以采用适当方式扩展HIE-FDTD的适用范围的同时保证计算精度是十分有意义的。本文在研究传统FDTD方法,结合现有的无耗三维HIE-FDTD方法,以及分析引入对角各向异性参数的HIE-FDTD基础上,提出了一种同时适用于有耗介质和无耗介质的三维对角各向异性HIE-FDTD方法。首先分析现有的FDTD及无耗介质中的HIE-FDTD理论,通过引入对角各向异性参数,在保留电导率及磁导率的基础上,细致讨论了对角各向异性HIE-FDTD算法,在优化算法的数值色散的同时,将HIE-FDTD方法应用范围从无耗介质扩展到有耗介质。此外,通过增长矩阵给出了对角各向异性HIE-FDTD算法的稳定性条件证明,从中可以看出该方法的时间步长与紧密结构方向的空间步长取值无关。其次,设计了带有CPML边界条件下的各向异性HIE-FDTD方法的程序流程,并给出了具体实现方案。在实现基于亚网格的FDTD方法基础上,通过对比两种不同方法的计算结果,在相同精度下,得到数倍的效率提升。最后,在完成理论分析推导及程序实现的基础上,将该方法分别应用于带有有耗介质基板的宽带滤波器和带有石墨烯涂层的吸收器的两类算例中进行分析计算,结果表明本文所提出的方法在仿真带有有耗介质以及无耗的介质时能够达到与传统FDTD相同的精度,在不同网格剖分密度条件下能够比传统FDTD方法提升数倍至数千倍以上的计算效率,充分验证了所提出的HIE-FDTD方法的有效性和高效性。