论文部分内容阅读
过渡金属催化的C-H键活化是选择性构建C-C和C-X键(X=O,N,Si,S,B等)最有效、最直接的方式之一,在有机合成化学领域发挥着越来越重要的作用。最近几十年,导向C-H键活化反应发展迅速,然而绝大部分的转化主要依靠贵的过渡金属,如Pd、Rh、Ru、Ir等。发展储存更为丰富、成本更低的第一过渡态金属来替代贵金属显然非常必要。Co催化剂以其低成本、低毒性和独特的反应机制在C-H键活化领域引起了广泛的关注。其中Co催化双齿配体导向体系采用廉价Co催化剂,具有高的官能团容忍性,并且能高效地促进传统体系无法实现的C-H键转化,因而具有更加广阔的应用前景。实现C-H键选择性活化一直是过渡金属催化C-H键活化领域面临的主要挑战之一。与在底物中引入导向基的策略相比,瞬时导向基导向的C-H键活化很好的避免了导向基团的引入和移除步骤,大大提高了反应的效率和官能团容忍性。反应采用催化量的瞬时配体即可实现期望的位点选择性C-H键活化,且催化过程完成后不改变底物的功能。本论文主要围绕Co(Ⅱ)催化双齿配体导向的C(sp2)-H键烷基化反应以及瞬时导向基导向的C(sp3)-H键芳基化反应,具体内容如下:1.Co(Ⅱ)催化以过氧化二异丙苯作为甲基源的C-H键甲基化反应甲基化反应在有机与药物化学中具有非常重要的应用价值。我们开发了首例以2-吡啶基异丙-2-胺(PIP-NH2)作为双齿导向基团,以过氧化二异丙苯(DCP)作为甲基化试剂和氢受体的Co(Ⅱ)催化惰性C(sp2)-H键直接甲基化反应。反应无需任何添加剂,操作简单,并且在催化剂用量较低的情况下也能高效地促进C-H键转化。反应的底物范围广,官能团耐受性好,一系列带有2-吡啶基异丙-2-胺(PIP-NH2)导向基团的苯甲酰胺、杂芳香酰胺和α,β-不饱合酰胺等都能在反应体系中高效地实现甲基化。初步的机理验证表明反应涉及单电子转移机理。2.Co(Ⅱ)催化惰性C(sp2)-H和C(sp3)-H键的交叉脱氢偶联反应催化交叉脱氢偶联(CDC)反应无需底物的预官能化,是高效构建C-C键最理想的策略之一。我们以2-吡啶基异丙-2-胺(PIP-NH2)作为双齿导向基实现了 Co(Ⅱ)催化惰性C(sp2)-H键与多种C(sp3)-H键的交叉脱氢偶联反应。该反应操作简单,官能团容忍性好,底物范围广泛,其中包括烷烃、甲苯衍生物、醚和硫醚的C(sp3)-H键都能与一系列(杂)芳香甲酰胺的C(sp2)-H键实现高效偶联。初步机理研究表明:C(sp3)-H键裂解过程涉及单电子转移机理,并且涉及反应的速率决定步骤。3.Pd(Ⅱ)催化瞬时导向基促进的脂肪族醛C(sp3)-H键芳基化反应瞬时导向基导向的C-H键活化避免了导向基团的引入和移除步骤,因此极大地提高了反应的效率和官能团容忍性。我们以3-氨基丙酸作为新型的瞬时配体实现了 Pd(Ⅱ)催化脂肪族醛C(sp3)-H键高位点选择性的芳基化反应。该反应展现了高的官能团容忍性和化学选择性,相比于惰性的β-亚甲基、γ-或δ-端C(sp3)-H键,反应更倾向于活化甲基的惰性β-C(sp3)-H键。反应底物范围广,环状醛可以实现非对映选择性的芳基化,惰性的二级β-C-H键也能有效实现转化。分离得到的反应中间体证实了反应过程经历[5,6]-双环钯金属中间体。