论文部分内容阅读
随着社会的飞速发展和宇航技术的不断进步,对高清和超高清视频的需求量越来越大,产生的数据量也越来越多,这给视频传输及空间存储都带来了巨大的成本。所以高清和超高清视频压缩编码是必不可少的技术手段。同时视频压缩编码的性能和复杂度也直接影响着高清和超高视频的应用范围和潜力。因此在保持一定视频质量的情况下,提高视频编码的压缩比,降低视频编码的复杂度是亟需解决的问题。作为新一代高效视频编码标准,HEVC相比于上一代视频压缩编码H.264节省50%左右数据量。然而随着高清和超高清视频的发展和普及,分辨率越来越来大,数量越来越多,并且还要在具有高误码率、带宽有限等特点的空间通信系统中进行视频传输,无疑对视频编码性能和视频传输可靠性提出了更大的挑战。因此,研究如何提高视频压缩编码性能,以及在空间通信系统中进行可靠的视频传输具有很高的应用价值和研究价值。本文针对基于HEVC的视频压缩编码标准以及在空间通信系统中的视频传输进行了深入研究和分析,取得的主要研究成果如下:(1)针对在保证一定视频质量的情况下,需要降低压缩数据量以满足通信带宽有限的问题,本文从消除数据统计冗余的角度,提出了一种基于Bandelet变换的视频压缩算法。该算法通过拉格朗日方法,并结合四叉树划分,以获得DCT变换系数的最优Bandelet基,从而实现对变换系数的最佳稀疏表达,提高压缩比。仿真结果表明,本算法在保证视频质量不变的条件下,能够平均降低约8%的码流。(2)针对HEVC标准进行高清和超清视频的视频压缩时,计算复杂度大幅度增大的问题,本文提出了一种用于全I帧压缩模式的基于相关性的快速帧内预测的压缩算法和一种用于低延时压缩模式的混合编码框架的快速压缩算法。基于相关性的快速帧内预测的压缩算法利用当前编码单元和相邻单元的相关性去除小概率的预测深度,从而减少遍历预测深度的次数。同时通过建立帧内预测模式候选表,利用预测模式的相关性,提出了一种分层搜索的模式预测方法,从而减少遍历帧内预测模式的次数。仿真结果表明,该算法仅以损失约1.2%的视频质量为代价,减少了约34.2%的视频编码时间。混合编码框架的快速压缩算法结合了静态背景视频的特点,采用运动目标检测算法提取出背景区域和运动区域。运动区域采用已提出的快速帧内预测算法和标准的帧间预测方法,背景区域利用相邻帧的相关性进行帧内预测和帧间预测。仿真结果表明,改进的混合框架快速压缩算法也仅以损失约1.6%的视频质量为代价,减少了约44.6%的编码时间。同时本文利用运动目标检测算法提取的划分区域,采用不均等的量化阈值对不同区域进行视频压缩,以提升人们对感兴趣区域的高质量的视觉需求。(3)针对空间通信系统视频传输过程中数据包丢失或错误引起的失真的问题,本文利用极化码中每个比特通道的可靠度不同,提出了一种基于极化码的不均等差错保护算法。采用一种降维的搜索算法,实现近似最优的极化码构造,以提升极化码的性能。通过对不同重要程度的压缩数据采用可靠度不同的比特信道进行保护,以降低空间通信系统视频传输对视频失真的影响。仿真结果表明,在相同信道条件下与均等保护算法相比,能够获得更好的视频质量。