论文部分内容阅读
产品快速创新设计及其自动化是未来企业在快速多变的市场中取得生存的关键。为此,本课题组提出了基于三维设计平台的产品快速创新设计理论体系,并已基本完成了机械系统符号方案的自动生成、符号方案的自动识别、各种基本机构库的建立等工作。基于前期工作,本文对快速创新设计理论体系的后续模块,即与符号方案对应的含约束复杂机械系统自动化空间布局设计和自动化虚拟装配设计进行了深入研究。此外对创新设计理论体系中的美学设计进行了研究,提出了一种产品外形美学设计方法。主要内容如下:(1)本文给出了一种适合复杂机械系统的空间布局表达方法,该方法包括基本机构的连接关系表达和基本机构的空间位置表达。首先分析了基本机构的各种组合方式,提出了适合于机械系统空间布局的3种基本机构连接关系,并给出了对应的三种布局模型。根据基本机构输入输出轴的特点,建立了一种适合各种基本机构的长方体布局模型,实现基本机构空间位置描述。在此基础上,研究了各种类型基本机构布局空间的确定方法,并编制程序实现了布局参数的自动生成。(2)基于前期符号识别结果,研究了含约束的复杂机械系统自动化空间布局优化算法。根据含约束复杂机械系统的特点,建立了适合于空间布局优化的数学符号模型。采用自适应遗传算法,将机械系统中各基本机构的布局干涉情况、连接关系以及输入输出轴方向和夹角约束等作为构造适应度函数的重要组成部分,利用十进制编码中的整数编码方法对各基本机构编码生成初始种群,通过选择、交叉、变异等操作,实现了复杂机械系统的空间布局优化。(3)采用面向对象技术及SolidWorks二次开发技术,基于“后台预置”装配方法,实现了对应上述符号方案布局优化结果的复杂机械系统自动化虚拟装配。通过读取布局优化模块存储的各基本机构相对布局系统全局坐标系的坐标变换矩阵,并依据基本机构布局模型的第一构件坐标系与基本机构三维实体模型坐标系的差异,对其坐标变换矩阵进行适当修正后,采用“后台预置”装配技术将组成复杂机械系统的各基本机构“预置”到特定的布局空间,从而实现三维虚拟样机的自动化生成。(4)提出了一种基于美学特征的参数化产品外形设计方法。该方法运用形态控制参数表达产品的形态要素,通过改变形态控制参数,实现形态要素的放大、缩小、变形及组合,从而可获得不同外观创意设计效果的产品外形。文中以工业缝纫机外形设计为例,基于UG平台及其二次开发技术UG/OPEN API,实现了工业缝纫机的外形美学设计,证明了该方法的可行性。(5)提出了一种含外形容器约束的复杂机械系统自动化空间布局方法。该方法将布局容器区分为凸面体和凹面体两种类型。针对布局容器的凹凸性,给出了两种不同的干涉检验方法。文中采用自适应遗传算法实现复杂机械系统的空间布局优化,初始种群可随机产生也可通过人机交互方式产生,人机交互方式用来控制机构组合中起始机构在全局坐标系中的摆放位置及姿态,从而可尽快生成初始种群。基于布局优化结果,采用“后台预置”装配技术,实现对应机械系统在布局容器内的自动虚拟装配。本文的主要特色及创新点如下:(1)将布局设计引入到基于三维设计平台的产品快速创新设计理论体系当中,并基于前期工作,实现了含约束复杂机械系统的自动化空间布局,从而使得由基本机构组成的复杂机械系统既可满足产品的工业美学设计要求,又可满足产品的寿命和可靠性要求。(2)完成了基于三维设计平台快速创新设计理论体系中虚拟样机的自动生成模块。从而使得在三维虚拟样机的层面上,从众多的创成设计方案中快速遴选出最具有创新性的设计方案成为可能。(3)提出了基于美学特征的产品参数化外型设计方法。该方法将美学形态要素与模型的关键特征参数建立关联,通过修改模型关键特征参数,可生成不同的具有创新性的产品外形。