【摘 要】
:
梯度方向在无约束最优化技术的发展中起着重要的作用.梯度法是求解无约束最优化问题的一个基本迭代方法,它在迭代的每一步沿着当前点的负梯度方向搜索下一个点.步长的选取对
论文部分内容阅读
梯度方向在无约束最优化技术的发展中起着重要的作用.梯度法是求解无约束最优化问题的一个基本迭代方法,它在迭代的每一步沿着当前点的负梯度方向搜索下一个点.步长的选取对梯度法的收敛速度影响非常大,经典的梯度法-最速下降法在大多数情况下收敛得相当慢的原因在于最优步长的选取.该文研究了梯度法的收敛速度和全局收敛性.首先,对于n个变量的一般形式二次正定目标函数提出了一个步长选取的准则,并在此准则下证明了梯度法从任意的初始点开始迭代,不超过n步就能达到函数的极小点.其次,对于n个变量的非二次目标函数也提出了一个步长选取的准则,并在此准则下证明了当目标函数满足一定的条件时,梯度法具有局部n-步二阶收敛速度.最后构造了两种混合梯度法并证明了它们的全局收敛性.
其他文献
分拆函数的同余性质是分拆理论和数论领域中一个古老而有吸引力的课题,并且与数学中的其他众多分支有着密切的联系,例如李代数的表示论、模形式、组合数学。q-级数权威专家,美国
该文探讨了反演技术及其等价的形式在寻求和证明超几何级数恒等式方面的应用.具体内容如下:1.初文昌[26]给出了Gould-Hsu反演的二重推广的q-模拟形式,但没有找到一个具体的恒
本文的主要贡献是拉马努金多项式和查波顿多项式上的组合学。借助于上下文无关文法,我们给出了拉马努金多项式的一个新的组合解释—偏序递增树,并建立了拉马努金多项式的两个组
经验似然方法足以和经典方法如正态近似理论以及当前比较流行的方法如Boot-strap与Jackknife相媲美.和Bootstrap与Jackknife一样,经验似然方法不用预先给定数据所属的分布族.
该文讨论了若干图类的四种不同的着色问题:动态着色、关联着色、平面图的完备着色和边面着色.利用构造性组合方法和换色技巧给出了Halin图和系列平行图动态色数的最小上界,并
设F是域,当chF≠2,3且n≤m时,设Mn(F)记F上n阶全矩阵代数,该文确定了Mn(F)到Mm(F)的保立方幂等的线性映射的形式.