论文部分内容阅读
传统的四氧化三铁吸波材料已经无法满足“薄、强、轻、宽”的要求,其在吸波领域的发展受到了限制。本文一方面通过设计四氧化三铁纳米微粒的微观形貌以及复合结构来提高吸收能力和降低密度,另一方面通过复合特殊形貌的其它材料改善吸波性能。主要研究成果如下:
(1)首先, 合成出Fe3O4空心球,接着通过水热、刻蚀、热处理得到卵黄-壳结构的Fe3O4@C微球,最后包覆片状MnO2得到卵黄-壳结构的Fe3O4@C@MnO2纳米复合材料。基于此特殊的微观卵黄-壳空心球结构以及碳和 MnO2介电材料的引入,Fe3O4@C@MnO2纳米复合材料具有优异的吸波性能,当填充比为80 wt%,厚度为4.2 mm时,反射损耗可达-58.25db,厚度为2.65 mm时,吸收带宽可达5.44GHz。
(2)其次,由于球形纳米粒子受到Snoek极限和较大退磁因子的影响,难以进一步提高性能,因此我们制备出纺锤状Fe2O3纳米粒子,再包覆棒状SnO2和片状MnO2,经过热处理,最终得到 Fe3O4@SnO2@MnO2纳米复合材料。基于此特殊的微观核壳结构以及 SnO2和 MnO2介电材料的引入,Fe3O4@SnO2@MnO2纳米复合材料实现较为优异的吸波性能,当填充比为60 wt%,厚度为3.9 mm时,反射损耗可达-50.4 dB,吸收带宽可达到9.18 GHz。
(3)最后,具有各向异性的磁性材料的磁化强度会受到外部磁场方向的影响,片状材料的易磁化方向为平行于平面的方向,而纺锤状纳米粒子难以实现沿着易磁化方向排布。因此,我们通过水热法制备出规则的正六边形片状 Fe2O3纳米粒子,经过热处理得到六边形片状 Fe3O4纳米粒子,最后对片状 Fe3O4进行面内取向,使得微片堆叠排布。由于片状结构的存在以及对片状纳米粒子实施的取向分布,当填充比为70 wt%,厚度为5 mm时,面内取向Fe3O4纳米粒子的反射损耗可以达到-47.67 dB,相比于无规分布的Fe3O4纳米粒子,反射损耗增加了258%。当厚度为2 mm时,吸收带宽可以达到3.1 GHz。
综上,本文制备出了特殊形貌的卵黄-壳结构 Fe3O4@C@MnO2 纳米复合材料、纺锤状Fe3O4@SnO2@MnO2纳米复合材料和六边形片状 Fe3O4纳米材料,研究了材料体系和微观结构对吸波性能的影响,获得了强吸收、频带宽、低密度的吸波材料,为铁氧体材料的改性以及纳米复合吸波材料的研究指明了方向。
(1)首先, 合成出Fe3O4空心球,接着通过水热、刻蚀、热处理得到卵黄-壳结构的Fe3O4@C微球,最后包覆片状MnO2得到卵黄-壳结构的Fe3O4@C@MnO2纳米复合材料。基于此特殊的微观卵黄-壳空心球结构以及碳和 MnO2介电材料的引入,Fe3O4@C@MnO2纳米复合材料具有优异的吸波性能,当填充比为80 wt%,厚度为4.2 mm时,反射损耗可达-58.25db,厚度为2.65 mm时,吸收带宽可达5.44GHz。
(2)其次,由于球形纳米粒子受到Snoek极限和较大退磁因子的影响,难以进一步提高性能,因此我们制备出纺锤状Fe2O3纳米粒子,再包覆棒状SnO2和片状MnO2,经过热处理,最终得到 Fe3O4@SnO2@MnO2纳米复合材料。基于此特殊的微观核壳结构以及 SnO2和 MnO2介电材料的引入,Fe3O4@SnO2@MnO2纳米复合材料实现较为优异的吸波性能,当填充比为60 wt%,厚度为3.9 mm时,反射损耗可达-50.4 dB,吸收带宽可达到9.18 GHz。
(3)最后,具有各向异性的磁性材料的磁化强度会受到外部磁场方向的影响,片状材料的易磁化方向为平行于平面的方向,而纺锤状纳米粒子难以实现沿着易磁化方向排布。因此,我们通过水热法制备出规则的正六边形片状 Fe2O3纳米粒子,经过热处理得到六边形片状 Fe3O4纳米粒子,最后对片状 Fe3O4进行面内取向,使得微片堆叠排布。由于片状结构的存在以及对片状纳米粒子实施的取向分布,当填充比为70 wt%,厚度为5 mm时,面内取向Fe3O4纳米粒子的反射损耗可以达到-47.67 dB,相比于无规分布的Fe3O4纳米粒子,反射损耗增加了258%。当厚度为2 mm时,吸收带宽可以达到3.1 GHz。
综上,本文制备出了特殊形貌的卵黄-壳结构 Fe3O4@C@MnO2 纳米复合材料、纺锤状Fe3O4@SnO2@MnO2纳米复合材料和六边形片状 Fe3O4纳米材料,研究了材料体系和微观结构对吸波性能的影响,获得了强吸收、频带宽、低密度的吸波材料,为铁氧体材料的改性以及纳米复合吸波材料的研究指明了方向。