论文部分内容阅读
综合能源系统作为能源互联网的物理载体,可以通过实现能源的梯级利用和多能互补协同运行,有效地提高一次能源利用率、增加可再生能源消纳,减少温室气体和大气污染物排放,从而在保障能源供给安全的同时,有效地应对能源危机、环境污染和气候变化。针对综合能源系统开展协同运行优化研究是实现其“安全、高效、清洁、节约”特性的关键技术。然而,如何提高系统出力设备动态仿真模型的准确性、揭示可再生能源间出力的相关性、合理地识别和表征系统中的不确定性参数、允分考虑气候变化对能源“供-需”的影响和生成适应气候变化的系统运行方案,是目前综合能源系统运行优化研究中亟待解决的难题。本文针对上述问题,综合运用机理建模理论、BP神经网络算法、Copula理论、不确定性优化算法、区域气候模拟模型和支持向量回归机算法,开展了综合能源系统动态建模仿真及协同运行优化研究,深入分析了气候变化对综合能源系统运行的影响,旨在为综合能源系统运行方案的制定和实施提供理论性支持和实践化依据。论文的主要研究内容包括:(1)用户级综合能源系统动态建模仿真和协同运行优化研究。基于BP神经网络算法和机理建模理论,建立了燃气轮机智能融合仿真模型,该模型不仅可以清晰地描述系统运行中能源的转移与转换的过程,而且修正了机理模型中动力学知识缺失和数据不足的模块。对比结果表明,智能融合仿真模型输出结果的平均绝对差值和均方根误差均明显优于单纯机理仿真模型。在此基础上,创新性地使用智能融合仿真模型代替传统能源系统运行优化模型中的设备仿真线性方程,实现了设备仿真模型和系统运行优化模型的有机组合,构建了以系统运营成本最小化为优化目标,包括能源供需平衡和设备容量限制等约束条件的用户级综合能源系统协同运行优化模型。在运用遗传算法求解优化模型的过程中,加入了自适应性交叉概率和变异概率,同时构造了惩罚函数,不仅提高了遗传算法的收敛效果、收敛速度和计算精度,还有效地解决了智能融合仿真模型作为非线性约束带来的复杂性,最终生成了系统的最优运行方案。该方案清晰地揭示了用户级综合能源系统在冬季、夏季和过渡季中,冷、热、电三种能源的传输和分配规律。(2)社区级综合能源系统协同运行优化研究。以天津市某大型园区为研究对象,集成Copula理论、区间算法和双重随机规划方法,建立了社区级综合能源系统协同运行优化模型,制定了社区级综合能源系统的最佳运行策略。其中,Copula函数可以清晰地刻画本文研究案例所在地区风能和太阳能发电出力的相关性;区间算法可以准确地描述系统的经济参数和设备运行参数存在的小范围变化;双重随机算法可以很好地反映负荷侧能源需求量的波动变化特性。研究结果表明,该优化模型可以全面地描述风、光联合发电出力违约水平与风、光发电量之间的相关性,有效地表征系统运营成本和供能违约风险之间的关联性,为当地管理者充分权衡系统经济性和安全性后制定系统运行和管理策略提供理论依据。(3)气候变化对综合能源系统协同运行影响研究。基于区域气候模式(PRECIS,Providing regional climate for impacts studies),分别对两个气候变化情景(RCP4.5和RCP8.5)和四个时间情景(2018年、2025年、2050年和2100年)下未来温度、风速和辐射量等气象要素进行预测模拟。在此基础上,使用PRECIS的气象要素预测结果作为输入变量,带入预先建立的可再生能源出力计算模型和基于支持向量回归机算法的负荷预测模型,准确识别气候变化对系统能源供应和需求的影响。结果表明,随着全球气候变化趋势的不断加剧,未来风能发电量和热负荷需求量呈现出下降的变化趋势;光伏发电量和冷负荷需求量呈现出上升的变化趋势;电负荷需求量在冬季呈现出下降的变化趋势,在夏季和过渡季呈现出上升的变化趋势。最后,以系统运行成本最小化为目标函数,以气候变化条件下的可再生能源出力和负荷预测结果为能源供需约束的重要输入,建立了考虑气候变化影响的社区级综合能源系统协同运行优化模型。基于多情景分析法,生成了适应气候变化的综合能源系统最佳运行策略。结果表明,该模型可以有效地避免气候变化可能导致的能源供需失衡,帮助决策者有效地应对气候变化、高效地规划一次能源的储备和利用方案、实现能源的合理调度、提高系统的经济效益和保证未来的供能安全。本文通过以上研究,生成了稳定、可靠的综合能源系统协同运行策略,达成了系统效率最优和成本最小,为实现能源的高效调配及可再生能源的最大化消纳提供了技术支持,获得了用户负荷及可再生能源在未来的动态变化特性,挖掘了气候变化对综合能源系统协同运行的影响规律,有利于解决气候变化条件下一次能源储备和利用的盲目性,显著提升系统的经济性和安全性。