论文部分内容阅读
核能作为未来应对全球性的能源紧缺极具潜力的清洁能源发展迅速,核主泵是维持核岛内系统正常运行的关键设备。基于AP1000的非能动设计理念,核主泵的入口不再设置整流长管路。这种独特的布置改动由于缺乏过渡管道,从蒸汽发生器流出的高温高压流体不经整流直接倒灌进核主泵,使核主泵的入流不再是设计时假定的均匀入流,而是形成入流畸变。AP1000核主泵设计寿命60年,如此长的使役周期内蒸汽发生器引起的核主泵入流畸变始终存在。核主泵的入流受蒸汽发生器下封头的影响,其几何形状相比弯管而言更加复杂。与此同时,AP1000单台核主泵的功率为5.2 MW,每个反应堆有4台核主泵同时运转,入流畸变引起的核主泵能量损失是巨大的。因此为避免核主泵在长期使役过程中发生入流畸变导致的叶片疲劳破坏,同时指导国产化核主泵的自主设计,迫切需要揭示蒸汽发生器引起的核主泵入流畸变形成机制,以及入流畸变对核主泵叶片水力动载的影响规律。本文基于973计划研究项目,针对核主泵与蒸汽发生器间的流场耦合效应的关键问题,提出了全面表征入流畸变的方法,揭示了入流畸变的形成机制及其演化规律;研究了入流畸变特性及其对核主泵的泵内流场造成的影响。相关研究成果对于我国核电设备的自主研发和未来长期使役的安全运行具有重要的理论意义和应用价值。主要研究内容及结果如下:(1)设计并搭建了联合测试试验平台,建立了蒸汽发生器下封头与核主泵联合计算域,从试验和模拟两方面探究了由蒸汽发生器下封头引起的入流畸变对核主泵进口流场产生的影响。试验结果发现,受蒸汽发生器下封头出口脱流影响,在核主泵的入口截面存在一个近似恒定的局部低压区,局部低速区以及偏心分布的漩涡区。与此同时,沿周向和径向,核主泵的入口位置的轴向速度分布均大于平均速度的40%;验证了蒸汽发生器导致的入流畸变在泵的进口处的存在,且得到了蒸汽发生器下封头所引起的入流畸变速度分布。进一步仿真分析泵内流场细节,通过对比入流畸变和入流均匀两种情况下的主泵流场各特性得出:入流畸变降低了核主泵的扬程和效率,引起了湍动能、湍流耗散的局部高值,说明由蒸汽发生器致入流畸变恶化了核主泵的泵内流场。在入流畸变条件下,叶轮轴向力的增加了1.1倍,轴向力变化幅度增加了10.1倍,叶轮径向力增大了2.8倍,径向力的变化幅度增大了3.5倍。此外,径向力的方向改变了90度,说明入流畸变既改变了泵内流体受载值的大小又改变了受载的方向。同时说明受蒸汽发生器出口脱流影响,在核主泵的入口截面存在一个近似恒定的大范围低压区,使轴向力降低,但当旋转的叶片周期性地掠过该低压区时会受到一个轴向上的脉冲载荷,使轴向力波动增大。(2)采用正则化螺旋分析方法分析了核主泵内流向涡的运动结构,从涡角度分析了由入流畸变引起的泵内流场恶化的原因。由入流畸变产生的涡,跟随着流体向叶轮方向运动,叶轮各流道产生不对称的、甚至旋向相反的涡核区域,说明入流畸变对主泵流场产生了不利的影响,叶轮流道内流场的对称性被打破,降低了叶轮的稳定性。进一步地,提出了一种基于伴随求解的复杂几何域与入流畸变间影响关系的分析方法,揭示了对入流畸变影响最显著的区域集中在蒸汽发生器下封头与核主泵入水管的相贯区。提出了速度畸变度、平均偏流角、漩涡畸变度三个指标全面评价由蒸汽发生器下封头导致的入流畸变,量化了核主泵的入流畸变现象,全面反映了入流畸变的流态特征,为全面评价入流畸变特性提供了重要参考。(3)基于对入流畸变形成机制的分析,提出了改善入流畸变对核主泵的泵内流场负面影响的方案思路。提出了一种基于抑制转角脱流的低入流畸变抑制控制方法。通过计算和试验比较叶轮出口的流场情况,验证了优化方案的可行性,该方案达到了降低入流畸变进而减小叶轮载荷的目的。并基于准牛顿优化算法得到了挡板装置的参数计算经验公式,便于在短时间内确定最佳化的设计关键尺寸。