基于电流体动力学的微纳直写工艺研究

来源 :江南大学 | 被引量 : 0次 | 上传用户:xboaty
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着各种功能性材料的开发利用,微纳制造在诸如柔性电子、光学器件、微流控器件等众多领域显得尤为重要。目前几种主流的微纳制造手段中,还存在设备昂贵、加工效率低、成型范围有限以及制造精度低等问题,难以满足现有的应用需求。电流体动力学(Electrohydrodynamics,EHD)直写打印技术是一种新型的微纳尺度打印方法,作为一种无掩模、非接触、直写增材制造工艺,具有成型速度快、材料兼容性好以及打印分辨率高等优点。本课题以高分子聚合物聚苯乙烯(PS)为研究对象,采用EHD直写打印技术对结构可控的PS微结构的制备工艺进行了研究。在搭建EHD直写打印平台的基础上对可控PS微结构打印工艺进行了优化;以所制备的PS微结构作为牺牲模板,采用软光刻方式成型聚二甲基硅氧烷(PDMS)微流道;同时,提出了基于EHD直写打印制备跨尺度微流道的工艺方案,展示了不同尺度流道的具体应用。本论文的主要研究内容如下:1.探究了PS溶液在连续锥射流模式下的打印规律,通过改变打印溶液的质量分数、施加电压、挤出气压以及收集板运动速度,实现了EHD直写打印工艺参数的优化。结果表明:(1)溶液的浓度决定了PS线条的形貌,通过提升PS溶液的质量分数(10%增加到18%),可以获得表面质量较高的PS线条;(2)控制电压在0.5-1.0kV范围内可得到适合打印的单股射流,且施加工作电压越大,获得的PS线条直径越小;(3)控制挤出气压在5-30kPa范围内可以获得稳定的打印效果,且在该范围内打印线条的直径随气压升高而增大;(4)控制收集板运动速度在15-30mm/s之间可获得连续的PS线条,且线条直径随收集板运动速度的增大而减小。2.对比了直流电压和脉冲电压作为激励电压时的液滴成型结果,发现脉冲电压无论是在液滴沉积可控性方面还是在均匀性方面都有更好的效果。脉冲电压工艺参数优化结果表明:(1)质量分数为5%的PS溶液适用于脉冲电压作用下液滴的直写打印;(2)脉冲电压占空比对打印稳定性具有重要影响,在20%占空比下打印稳定性最优;(3)直流电压打印的点直径随电压增大而减小,而脉冲电压得到的点直径随脉冲幅值的增大而增大。3.在PS溶液打印工艺优化基础上,制备了不同尺度PS线条作为牺牲模板,并将其应用于跨尺度微流道成型。对所制备的PS模板进行尺寸表征的同时,观测了PDMS表面微流道结构;对流道表面进行了元素分析检测,确保流道内部无残留PS线条;对流道形貌及表面质量进行测量分析,检测流道内壁粗糙度低于300nm。最后,对封装后的流道分别以普通墨水和液态合金进行填充,成功制备了Y型微混合器与柔性电阻传感器,展示了EHD直写打印在微器件制备领域的潜力。
其他文献
随着互联网的高速发展,很多电子商务平台逐渐兴起并提高了大众生活质量,但随着数据规模的爆炸式增长,正在使用推荐系统的互联网平台(如阿里巴巴、Paper Weekly等)面临着严重的信息过载问题,无法针对用户特点做有效的个性化推荐。由于传统推荐算法的模型表达能力不够强,而概率图模型同时具有概率论和图论的优势,故可使用概率图模型对推荐问题中各变量之间的依赖关系提供解释性更强的建模,但很多基于概率图模型的
随着社会的飞速发展,大型集会和游行活动的增多,活动中频繁的践踏事件造成大量人员伤亡,因此人群计数的研究成为近几年来计算机视觉领域的主要研究方向之一。本文通过深入分析卷积神经网络中的优势、充分考虑特征层内部之间的联系以及从分群分布随机的角度出发,提出以下三种不同的人群计数网络结构模型。(1)提出基于特征自学习多尺度残差生成对抗人群计数算法(Generative Adversarial Network
人体行为识别旨在针对数据中人体的行为和意图进行识别和理解,是计算机视觉领域一个重要且热门的研究课题,并在机器人技术、人机交互和智能监控等领域起着至关重要的作用。虽然行为识别算法在早期的研究中已经取得了极大的进步,但仍会受到光照改变、尺度变化、细粒度动作多等因素的影响。随着行为识别数据日趋丰富多样,利用多模态数据间的互补优势实现联合预测来提升识别性能逐渐成为许多研究者的重点研究方向。许多现有工作倾向
在文化消费升级的背景下,敦煌文化数字化产业进入了一个新的发展阶段。敦煌文化App作为敦煌文化的重要组成部分,是文化和历史记忆的载体,是敦煌文化与受众之间的桥梁。以移动端平台为基础的敦煌文化数字化传播方式,不仅为敦煌莫高窟带来了利润,也为受众提供了独特而个性化的体验。但目前市场上对敦煌文化App的设计还存在一些不足,这使得对敦煌文化App的设计研究越来越迫切。本文共五章,首先根据莫高窟文化研究现状,
为了应对日趋严峻的物联网恶意软件攻击,需要对恶意软件进行详细的分析并获得有效的威胁情报,从而增强对物联网攻击的发现与预警能力。本文面向物联网威胁情报的需求,分别从恶意软件分析、轻量级物联网异常流量检测角度展开威胁情报挖掘关键技术研究。本文的主要工作和创新内容概括如下:(1)针对当前物联网恶意样本的检测率不高,物联网恶意软件架构复杂,用于训练的正常样本提取困难,动态分析检测耗时、耗费资源等问题,提出
甲状腺癌是全球增长最迅速的、最多见的内分泌恶性肿瘤之一。在最近的几十年中,甲状腺癌的世界发病率显著升高。甲状腺癌还是女性中排名第五的最普遍的癌症,并且女性患癌的概率是男性的3倍。由于甲状腺癌复杂的疾病进展过程,预测这种癌症的潜在生物标志物仍然面临巨大的挑战性。本文基于TCGA数据库和GEO数据库中甲状腺癌的多组学数据以及新近开发的一些特定的生物数据存储库,通过基因差异表达分析、构建生物网络以及基因
信息的爆炸性增长导致数据流广泛出现在各个应用领域中,如无线传感器网络数据流、股票交易数据流、电子商务数据流等,如何高效获取这些数据中蕴含的信息成为数据流挖掘的主要任务。区别于一般的静态数据,数据流通常具有到达速度快、规模大、动态变化等特征,并且数据流中的目标概念随时间推移会发生改变,导致概念漂移发生,严重影响数据流挖掘效果。此外,数据流中通常存在类别不平衡问题,导致少类实例中蕴含的信息难以获取。因
近年来,因严重交通事故、火灾及工业意外等所致的高能量损伤急剧增多,据估计我国每年因此而接受创面修复手术的患者有近百万例。不合理的术前设计方案易造成皮瓣崩裂、坏死等而引发患处功能障碍,甚至可致截肢,给患者增添更多的痛苦和经济负担。因此,研究并创新现有的术前皮瓣设计方法,快速制定合理的术前指导方案,是基础研究转化为临床应用极好的切入点,具有重要的理论意义和实际价值。本文面向临床中的创面实例,就三维创面
移动互联网时代,信息数据如图片、文本、音视频等呈现爆炸式增长。如何从这些语义关联且模态多样的数据中获取有价值的信息显得尤为重要,跨模态检索也因此备受关注。与图片检索等单模态检索不同,跨模态检索能跨越不同模态实现信息检索,更能满足用户日益增长的检索需求。而不同模态的数据特征表示间存在天然的异构鸿沟,无法直接度量其相似性,同模态数据的底层特征表示与高层语义类别间又存在语义鸿沟,难以获得语义一致的数据表
聚类分析作为数据挖掘和模式识别等领域的重要工具,一直以来都是非常热门的研究话题之一,并得到了非常广泛的应用。但是,随着应用环境的不断变化,特别是进入“大数据”时代,数据规模的庞大性和结构的复杂性对聚类分析提出了越来越严峻的挑战,特别是数据的高维度越来越普遍,包括各种图像数据、生物基因表达数据、搜索引擎数据等的维度往往高达上万维。传统聚类算法通常是针对低维度数据设计开发的,在进行高维数据的分析处理时