论文部分内容阅读
本文研究非凸问题鞍点计算的新算法及其应用,主要内容分为四个部分.第一部分,我们研究计算无约束鞍点的基于新的优化策略的局部极小极大方法(LMM).首先,我们给出一类推广的局部极小极大原理,并从连续动力学的角度理解LMM能以稳定方式计算不稳定鞍点的数学本质.然后,我们在使用一般下降方向的LMM算法框架下,系统地讨论各种步长搜索准则的可行性,并建立完整的全局收敛性结果.这使得各种高效的优化策略可以应用到LMM算法中.特别地,我们提出全局收敛的Barzilai-Borwein(BB)型LMM、共轭梯度型LMM和L-BFGS型LMM三类新的LMM算法,用于改进传统LMM算法的计算效率.最后,我们将新的LMM算法应用于几类半线性椭圆边值问题、带非线性边界条件的椭圆问题和Kirchhoff型拟线性非局部问题的多解计算,并比较不同LMM算法的数值性能.广泛的数值结果表明,这三类新的LMM算法能显著地提高传统LMM算法的计算效率.第二部分,我们研究计算无约束鞍点的基于新的优化策略的虚拟几何对象型LMM(VGOLMM).首先,基于对一类广义的VGOLMM动力系统的分析,我们提出使用一般下降方向的广义VGOLMM算法框架,并在这一框架下讨论不同步长搜索准则及相应的全局收敛性.许多高效的优化策略可以用于实现该VGOLMM算法框架.由于BB策略的简单性和高效性,我们提出使用BB型步长的VGOLMM算法.最后,我们将新的VGOLMM算法应用于散焦型非线性Schr?dinger方程和一类Allen-Cahn型奇异摄动Neumann问题的多解计算,得到了丰富的数值结果.数值结果表明,使用BB型步长的VGOLMM算法比原始VGOLMM算法的收敛更快.第三部分,我们研究计算玻色-爱因斯坦凝聚体(BEC)基态解的精确、高效的新算法.BEC的基态解通常定义为相应的Gross-Pitaevskii(GP)能量泛函在某些约束条件下的最小值点,离散归一化梯度流法(GFDN,或虚时间演化法)是计算BEC基态解的最主要的方法之一.我们以单组分BEC和spin-1 BEC模型为例,通过分析和数值实验说明,采用基于GFDN的几种典型时间离散格式计算BEC基态往往会得到误差依赖于时间步长的不准确的结果,这是本文的一个重要发现.为了改进GFDN,我们提出计算BEC基态解的带Lagrange乘子的梯度流法(GFLM),并证明基于GFLM的各种典型的时间离散格式均能与基态解的Euler-Lagrange方程精确匹配.进一步,我们将GFLM推广到具有挑战性的一般spin-F BEC模型,并研究确定投影常数的方法.由于精确投影方法往往在计算上比较复杂或缺乏投影常数的存在唯一性保证,我们提出两类非精确投影策略,使得投影常数可以直接显式计算,并估计它们的约束违反度.最后,我们给出spin-1,spin-2和spin-3情形的广泛的数值结果以及观测到的一些非常有趣的基态现象.第四部分,我们研究计算约束鞍点的新算法并应用于BEC激发态计算.首先,我们提出计算一般约束鞍点的约束最柔上升动力学(CGAD)方法,证明其稳定平衡点是具有对应指标的约束鞍点,并对一类理想化的CGAD建立约束鞍点附近的局部指数收敛性.然后,我们将CGAD应用到BEC模型的激发态计算.由于BEC的激发态对应于GP能量泛函在某些约束条件下的能量高于基态的临界点,因此GP能量泛函的约束鞍点一定是激发态解.我们应用CGAD计算单组分BEC模型对应的GP能量泛函在单位球面约束下的鞍点,并设计基于(半隐)向后向前Euler时间离散格式和Gram-Schmidt正交规范化过程的高效数值格式.最后,我们基于一维和二维数值实验,发现了一些新的激发态解和有趣的物理现象.