【摘 要】
:
高精度水下导航定位能力一直是制约AUV(Autonomous Underwater Vehicle,AUV)实现大范围,长时序,远距离海底地形抵进探测的瓶颈问题。推位导航系统能够为AUV提供连续的水下位姿信息,但是其自体定位误差随时间累积,需要利用卫星导航系统或声学定位系统进行修正。但声学定位系统覆盖范围有限,而卫星导航系统无法在水下环境中使用。地形辅助导航系统虽然自主性较高,不需要卫星导航系统或
论文部分内容阅读
高精度水下导航定位能力一直是制约AUV(Autonomous Underwater Vehicle,AUV)实现大范围,长时序,远距离海底地形抵进探测的瓶颈问题。推位导航系统能够为AUV提供连续的水下位姿信息,但是其自体定位误差随时间累积,需要利用卫星导航系统或声学定位系统进行修正。但声学定位系统覆盖范围有限,而卫星导航系统无法在水下环境中使用。地形辅助导航系统虽然自主性较高,不需要卫星导航系统或声学定位系统辅助修正,但需要预置先验地图,不适用于AUV对未知海域的海底地形探测。同步定位与建图技术(Simultaneous Localization And Mapping,SLAM)可以使AUV在对周围环境地图进行实时构建的同时获取自身在该地图中的位姿估计。因此,SLAM技术可以同时解决AUV定位与环境地图构建两个问题,在水下导航定位技术中极具发展潜力和空间,对于提高AUV的自主性有着重大意义。但SLAM技术不具备海底地形场景自主认知能力,智能水平较低,无法根据已构建的海底地形数据实时优化航行路径,主动修正AUV定位误差,极大地限制了AUV的自主性与智能性水平。针对这一问题,本文开展水下主动SLAM技术可导航区自主认知与路径规划算法研究。首先,针对AUV水下SLAM不具备海底地形可导航性自主认知能力问题,提出了一种基于高程差的海地地形图可导航性非参数化表征算法,并基于DBSCAN(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对海底地形非参数化特征进行聚类,提取可导航区的地理位置信息,使AUV能够通过对海底地形高程地图进行分析,从而具备了对环境的自主认知及辨识能力。其次,针对多波束声呐地形扫测机理,提出一种基于虚拟路径的螺旋卡尺(Rotating Calipers,RC)海底地形全覆盖路径规划策略,使AUV快速感知海底地形可导航区域的同时,规划可导航区切入方式,优先扫测可导航区海底地形,构建任意非凹几何形状的可导航区高精度海图。然后,针对AUV水下SLAM不具备定位误差主动修正能力的问题,提出了AUV定位误差主动修正路径规划算法,构建海底地形可导航区主动回溯路径。在AUV导航系统定位失准时,引导AUV规避碍航物返回可导航区进行误差修正,提升了AUV的自主性以及智能性。最后,针对多波束声呐条带状海底地形感知信息间无法进行序贯匹配的问题,基于高斯回归过程对当前时刻海底地形进行软观测,进而采用ICP算法实现了一种海底地形硬观测与软观测相匹配的AUV定位误差修正算法,抑制了AUV导航误差的发散速率。
其他文献
运动想象脑机接口系统一直以来都是脑机接口领域研究的热点,它可以将神经活动转化为辅助设备的控制命令来帮助残疾患者完成一些人体指令。但目前在精确理解大脑动态和对不同的运动想象脑电信号分类的工作中依旧面临着很多困难,尤其是在多种动作的分类问题中,如何有效提取特征和提高信号分类准确率,依然是现在需要解决的问题。本文主要使用深度学习的方法对四种动作的运动想象脑电信号进行分类分析,工作内容包括以下几个方面:(
多目标优化问题是优化领域中重要的研究分支,有着鲜明的实际背景和广泛的应用领域,诸如:社会经济、交通管理、工程设计、军事国防、管理工程与人工智能等众多领域。其方法业已成为上述领域的重要决策工具。近几十年来,多目标优化的理论与方法研究成果卓著,在理论上,众多学者关注多目标优化问题最优性条件与对偶理论,以及若干广义凸性的研究。凸性是数学中的一个基本概念,它在大量的数学问题中起着非常重要的作用,凸优化具有
渐开线花键是汽车、船舶、航空等工业领域传动系统中的关键部件。在船用湿式摩擦离合器传动系统中,花键联接的承载能力和工作寿命对传动系统的可靠性起着决定性作用。传统的花键设计方法通常未充分考虑不对中、加工误差及转矩波动的影响,不能准确确定花键副的载荷分布及预测微动磨损寿命,因此有必要对渐开线花键副在各种形式不对中工况下的应力分布及微动磨损性能展开研究。本文的主要工作如下:(1)对摩擦离合器渐开线花键的各
基础学科理论的发展、突破以及应用技术的进步,使得机器人相关理论和技术得到了快速的发展。随着机器人在众多领域中的应用,对其结构、控制精度、工作效率等提出了更高的要求。本文以六自由度机械臂为研究对象,对其运动学、运动规划、动力学以及存在不确定性干扰时的轨迹跟踪控制进行研究。首先,采分别用D-H法和旋量理论建立六自由度机械臂正运动学方程以及相应的雅克比矩阵,并通过数值计算以及仿真验证其正确性,在此基础上
随着工业化生产的发展以及智能制造行业的兴起,增强现实(AR)技术日益成为生产中的主流辅助技术。大型工厂设备固定,体积大,且操作较为繁琐,操作员在启动、控制设备和处理数据时步骤较为复杂。本文针对大型工厂设备上述特点,提出一种基于运动学定位的AR工作平台框架。该平台上位机提供生产现场的俯视视角,使用高可观性虚拟模型来辅助工人进行正确的操作,并通过显眼的模型视觉变化来直白地反馈原本枯燥的数值信息,同时提
跨介质无人航行器可以在水中和空中运行,同时也可以进行跨介质运动。它具有更多的工作运行策略,从而执行更加多样化的任务,这些特点决定了它会在救灾,勘探,军事侦察等领域有广泛的应用。本文立足于实际需求与应用,设计了一款结构简洁,长续航,高效率的跨介质无人航行器,并使用螺旋桨与变速箱配合作为推进装置。还进行了跨介质航行器的总体设计和关键部件强度校核,以及跨介质航行器出水入水的策略分析,最后了进行气动分析和
精密单点定位(Precise Point Positioning,PPP)是一种利用高精度卫星轨道和钟差产品,精确考虑各种误差修正,基于单台全球导航卫星系统(Global Navigation Satellite System,GNSS)接收机的伪距和载波相位观测量,进行高精度定位的技术。多模多频信号的兼容与发展是未来GNSS发展的重要趋势,并且多模多频PPP具有增加观测冗余信息、提高系统性能可靠
髓内钉内固定术现阶段是腿部股骨及胫骨骨折的首选治疗方案,但在临床手术中髓内钉远端孔的锁定给医生造成了很大的困难。传统的锁定手术往往会在X光机的透视下进行,这会导致大剂量的射线暴露,并且给予手术医生的指示效果并不直观,术中反复的透视操作也会消耗大量的时间。本文对现有辅助系统的优势与弊端进行了分析研究,结合计算机图形学、骨外科医学和增强现实技术,在移动式C形臂X光机的基础上开发了一套增强现实骨科手术平
雷达通信一体化系统是指雷达与通信设备工作在同一频段,能够同时完成目标探测、跟踪与数据传输,提高频谱利用效率,节省硬件资源,具有广阔的应用前景。然而,当前雷达通信一体化系统存在探测性能较差、信息传输速率较低、无法消除用户间互相干扰与多个一体化系统之间干扰等问题。论文针对上述问题展开研究,提出一种雷达通信一体化系统联合波束设计方法,消除了雷达和通信用户之间的干扰以及通信用户之间的互相干扰,并将正交频分
陆地资源的逐渐枯竭促使各国重视海洋的开发和利用,载人潜器作为海洋探测的利器也越来越受到重视,而有机玻璃材料因其具有优异的耐候性、低密度、高透光率等优点,特别适合制作成为全透明载人舱体。有机玻璃是一种粘弹性材料,受外压长期作用时,有机玻璃耐压结构会发生蠕变变形,导致承载能力降低。因此,为合理利用有机玻璃材料,保证有机玻璃耐压球壳在外压作用下的安全可靠性,有必要研究和掌握有机玻璃耐压壳的蠕变破坏问题。