【摘 要】
:
当前风能发展主要趋势是风电机组单机容量加大,叶片尺寸不断加长。使用更长的叶片会导致机组载荷更复杂,更容易受到损伤,缩减机组服役寿命。此外,随着平价上网政策实施,有必要在风电机组全生命周期严格控制成本。因此,对风电机组载荷控制提出更高要求。尾缘襟翼是一种有效降低风电机组载荷的流动控制手段,近些年受到国内外大量学者关注。当前研究表明,设计叶片时考虑尾缘襟翼进行协同设计,可以有效降低载荷。尾缘襟翼控制系
【机 构】
:
中国科学院大学(中国科学院工程热物理研究所)
【出 处】
:
中国科学院大学(中国科学院工程热物理研究所)
论文部分内容阅读
当前风能发展主要趋势是风电机组单机容量加大,叶片尺寸不断加长。使用更长的叶片会导致机组载荷更复杂,更容易受到损伤,缩减机组服役寿命。此外,随着平价上网政策实施,有必要在风电机组全生命周期严格控制成本。因此,对风电机组载荷控制提出更高要求。尾缘襟翼是一种有效降低风电机组载荷的流动控制手段,近些年受到国内外大量学者关注。当前研究表明,设计叶片时考虑尾缘襟翼进行协同设计,可以有效降低载荷。尾缘襟翼控制系统的设计是其中一个重要环节。但对于实际风电机组,尾缘襟翼应当采用开环控制还是闭环控制尚未有明确结论。针对该问题,在原有的智能叶片仿真平台上进行二次开发,自主编写尾缘襟翼开环控制仿真平台。开环控制函数为正弦函数和方波函数形式,三支叶片上的尾缘襟翼独立控制。以该仿真平台为基础,开展不同入流条件尾缘襟翼开环控制仿真研究,探究尾缘襟翼开环控制规律。首先在剪切来流下仿真,探究不同幅值和频率对开环控制效果影响。结果表明,开环控制系统能够有效抑制叶根挥舞方向疲劳载荷,特别是在额定风速以上,最多能够降低66%的叶根挥舞方向力矩波动。尾缘襟翼摆动频率取风轮旋转频率1P时,能有效控制叶根挥舞力矩,以其他频率摆动反而会在对应频率处引入干扰,使对应频率处功率谱密度值增大。尾缘襟翼控制后增大了推力波动,从而对塔架起到负面作用,尤其是塔基俯仰力矩。湍流是风电机组疲劳载荷的重要影响因素,在湍流条件下探究开环控制尾缘襟翼降低叶片疲劳载荷能力更具意义。结果表明,高于额定风速时,开环控制能有效降低叶片疲劳载荷,控制后叶根挥舞力矩标准偏差降低20%。最后,在极端相干阵风条件下开展仿真研究,探究尾缘襟翼开环控制对极限载荷的控制能力。根据机组运行特点将整个运行过程划分为4个工作区域,当风电机组处于不同工作区域时,最佳摆动幅值参数不同。因此,根据机组偏航和变桨特点对不同区域进行分段控制,有助于充分发挥尾缘襟翼控制能力。总而言之,尾缘襟翼可以在不影响输出功率的前提下,有效地降低叶片疲劳载荷和极限载荷。研究结果为尾缘襟翼开环控制器设计提供参考,对推动尾缘襟翼大规模工业化应用的进程有一定意义。
其他文献
压缩空气储能系统离心压缩机具有单级压比高、运行工况范围广、结构紧凑、运行平稳等特点,其特性对储能系统的运行性能具有决定性影响。排气蜗壳作为离心压缩机的重要部件之一,由于完全三维的、湍流的内部流动对压缩系统的整体性能和工作范围有着直接且不可忽视的影响,掌握其内部流动和损失机理及截面参数影响规律对蜗壳设计及系统运行性能有着重要意义。因此,本文对压缩空气储能系统离心压缩机排气蜗壳开展了三维气动优化设计方
能源是维持人类社会发展和进步的重要源泉和保障。然而在化石能源的开采和燃烧在提供能源的同时也引起了全球性环境污染问题。燃烧的污染物主要集中在多环芳烃(PAHs)和碳烟等。芳烃燃料是石油产品及其替代燃料的重要组分,且芳烃燃烧能够促进PAHs和碳烟等重要燃烧污染物的形成,是研究碳烟形成的理想平台。含氧燃料的燃烧可以减少碳烟的形成,降低污染物的排放。本论文选取苯甲醛(AlCHO)和苯甲醇(AlCH2OH)
超临界流体具有广泛的应用前景,特别是以超临界CO2布雷顿循环为代表的先进流体循环系统等方面的应用对于实现我国“碳中和”目标具有重要的战略意义,全面了解超临界流体的传热传质特性是超临界流体进一步优化应用的基础。以超临界流体为代表的复杂流场输运行为特性研究很大程度上依赖于高效测量技术的发展。其中,干涉测量法以其非侵入性等优点被大量应用于密度场、浓度场等的可视化测量。近年来,相移干涉测量技术发展起来,其
激光选区熔化技术(Selective Laser Melting,SLM)过程不受零件复杂程度制约,能够实现薄壁、复杂腔型与髓形冷却流道零件等传统制造方式较难加工结构的加工制造。冲压发动机作为典型薄壁结构具有较大的深径比,利用传统制造工艺较难实现。薄壁零件局部温度场呈动态变化、瞬态不均匀等特征,且与实体结构相比,散热面积小、温度变化大、结构刚性差,在成形过程中极易受到温度场变化的影响,因此薄壁结构
我国水泥行业产量大,能耗高,污染物排放高,已成为我国继电力和交通行业之后的第三大NOx排放源。水泥工业低NOx排放控制技术是保证其可持续发展的重要前提,但随着环保压力的不断增大,现有技术已难以满足日益严苛的NOx排放标准。针对现有脱硝技术面临的瓶颈难题,中国科学院工程热物理研究所循环流化床实验室团队提出了适用于燃煤水泥窑炉的原位还原脱硝技术。该技术通过煤粉的预处理过程产生包含煤气和半焦的高温预热燃
压缩空气储能系统的优点包括容量大、储能周期长、寿命长、易于调节等,可灵活实现与其他能源系统的互补集成。为了提高火电厂热电联产机组调节灵活性,同时增强系统调峰能力并扩大可再生能源入网比例,本文针对一种热电联产机组与压缩空气储能系统耦合的新方案进行研究。该方案在强化供热过程采用压缩空气储能系统储存电能并利用压缩热供热,以提高系统供热比例;强化供电过程利用热电联产机组抽汽加热储能系统膨胀机入口空气,以提
为满足电力系统削峰填谷的调节需要,实现可再生能源的大规模稳定应用,储能技术不可或缺,而压缩空气储能(CAES)系统被认为是最有发展前景的大规模物理储能技术之一。涡轮是压缩空气储能系统释能阶段的关键核心部件,其性能对储能系统效率具有决定性影响。由于压缩空气储能系统要及时对用电负荷的变化做出响应,因此其涡轮常运行在频繁启动和停机过程下。在涡轮启动过程中,涡轮的转速从零至额定转速,其内部流场表现出强烈的
20世纪以来工业发展导致能源消耗量剧增,而随之而来的制冷、制热需求也不断增加。由于传统氟利昂工质对于环境的破坏性,二氧化碳(CO2)等自然冷媒重新得到应用并成为首选替代工质,同时对CO2的使用也能够从侧面帮助解决碳排放问题。然而目前利用CO2进行制冷、制热主要存在成本高、单机循环功率较小的问题,需要增加其功率以适应工业供热、大型民用设施供热和高寒地区居民供暖,因此设计适用于兆瓦级跨临界CO2(Tr
液压机械系统具有响应快、功率密度高、刚度大、精度高的特点,被广泛应用于燃气轮机执行机构的控制,但是由于其结构精密、工作环境恶劣,在使用的过程中难免会出现故障。燃气轮机一旦发生液压机械故障,轻则停机影响工作,重则机毁人亡,因此,燃气轮机液压机械部件容错控制能力的研究具有重要的意义。本文以300 MW重型燃气轮机的进气口导叶执行机构、防喘放气阀执行机构、燃料阀执行机构为研究对象,对其进行了故障梳理、需
随着在船舶动力、管道运送、发电等方面对燃气轮机的需求日益增加,燃气轮机的应用越来越广泛,同时,工业生产对燃气轮机的要求也越来越多样化。面对多样化的工业需求与工作环境,如何实现燃气轮机总体性能优化设计并提高优化设计过程的灵活性成为了意义重大并具有经济价值的问题。更具体地,在实际工业生产中,为了降低成本,需要根据燃气轮机的工作地点选取不同的燃料。当供给的燃料发生了变化,无论是部件层面的压气机、燃烧室、