【摘 要】
:
进入21世纪,科学技术发展不断加速。在“大众创业、万众创新”的浪潮下,高校、企业联合的校企合作研究模式越来越流行,科技发展硕果累累。在此背景下,许多的城市,城区,乃至社区都需要配备相应规模的科学展览建筑,用于研究成果的发布展示,同时也满足青少年的科普需求,因此对科学馆的设计方法、设计模式、设计成果等相关的研究也越来越必要。随着素质教育的推进,教育观点也逐步发生了改变:教学理念由单纯的科学文化知识教
论文部分内容阅读
进入21世纪,科学技术发展不断加速。在“大众创业、万众创新”的浪潮下,高校、企业联合的校企合作研究模式越来越流行,科技发展硕果累累。在此背景下,许多的城市,城区,乃至社区都需要配备相应规模的科学展览建筑,用于研究成果的发布展示,同时也满足青少年的科普需求,因此对科学馆的设计方法、设计模式、设计成果等相关的研究也越来越必要。随着素质教育的推进,教育观点也逐步发生了改变:教学理念由单纯的科学文化知识教育转变为对学生综合素质的培养。教学方式由以前的单向填鸭式教学逐步转变为老师,学生,科研人员的互动合作等。小型科学馆在这样的背景下成为了连接高校、企业、乃至中小学的第二纽带,既可以是企业的“产业孵化园”,又可以是学生,科研人员课余交往活动的“娱乐”场所,因此,科学馆的设计要满足当代学生,科创人员,人民群众的多层次、复合化空间的要求,更好地促进交流互动的发生。本文从设计实例入手,研究了以往和当下科学馆的设计策略,并以研究成果为基础,来指导具体的科学馆设计实践。深圳市南山区作为深圳高科技产业的集中区域,有着先天的科创基因,地处南山中心区的深圳大学及其师生,也应当拥有与周围的科创人员更为密切、深入的交流场地。我们将以此作为契机,把深圳大学东北侧区域(紧邻科技园)作为研究样本,来探讨在此设计科学馆的具体策略,最终形成复合化高,公共性强,空间灵活的科学馆设计成果。
其他文献
随着超高层建筑结构高度越来越高,结构自重对结构设计影响比重越来越大,为支撑上部结构,底部柱子截面越来越大。为减小构件截面面积,实际工程采用高强混凝土代替传统普通混凝土。但高强混凝土在工程实践中带来了配箍率高、造价高、钢筋笼绑扎困难、浇筑质量难以保证等一系列问题。近年来,部分学者通过往混凝土中添加钢纤维或合成纤维来抑制高强混凝土的爆裂,在一定程度上改善了高强混凝土的脆性和变形能力,但是掺入钢纤维会使
在光镊等技术中,利用光与物质相互作用的光学力对颗粒的操控,在理论与实验上已经被广泛的研究探讨。因为光镊的操控方式具有无侵入,无损伤的特性,因此在生物,医药,医疗检测领域得到了大量的应用。在一般的捕获光镊中,光场会在照射区域上沿着光传播的方向推动微纳颗粒,或者利用场强梯度来捕获微纳颗粒,这种辐射压力和梯度力是可明显观察到的。近年来,光镊技术中的异常受力现象由于其新颖的受力现象受到了广泛关注。这些光镊
柔性压力传感器是一种将力学刺激转换电信号的电子器件,在可穿戴电子设备、健康监测、运动监测、机器人、智能人机交互以及人工智能等领域有着巨大的应用前景。宽的工作量程和高灵敏度是至关重要的性能参数,广大研究者试图通过基于传感机制利用合理的结构设计有效提高柔性压力传感器的性能第一种是引入了平面的微结构设计比如微金字塔、微柱子、微半球以及互锁微结构等等,这些结构有效的提升了传感器的灵敏度,响应时间等等,但是
继阴极射线显示管(CRT)和液晶显示器(LCD)之后,有机发光二极管(OLEDs)作为第三代显示技术,具有柔性可折叠、轻薄、宽视角等特点,在显示和照明领域有着广阔的应用前景。近年来,热活化延迟荧光(TADF)材料作为新一代的纯有机发光材料,不需要铱、铂等重金属,同时可以实现100%的激子利用率。然而,目前还有一些问题亟需解决。一方面,高效的TADF材料应该同时具备足够小的单、三线态能级差(ΔEST
纺织品是贴近人类皮肤的又一层重要屏障,天然的纤维尤其是棉由于它们自身的亲水性,非常适宜微生物的生长繁殖。而微生物在纺织品的泛滥不仅会影响美观,如发霉、变色、褪色等,也对人体健康有严重的消极作用,造成的细菌感染是世界公共卫生面对的巨大挑战之一。手术服、口罩、伤口敷料等一些特定应用也必须具有一定的抗菌性能。因此,为了对抗这些有害微生物,强化屏障,赋予纺织品一定的抗菌性能是很有必要的。基于卤胺类化合物广
堇青石陶瓷具有热膨胀系数低、抗热震性能好、化学性能稳定、热导率小、介电常数低等优点,在汽车、电子、冶金、化工和环境保护等领域具有广泛应用。然而,传统的陶瓷成形技术难以成形具有复杂结构的堇青石陶瓷零件,限制了其应用范围。DLP光固化成形技术为新型复杂堇青石陶瓷结构的制备提供了一条新的思路。堇青石光敏树脂陶瓷浆料的制备和DLP打印及后处理工艺为堇青石陶瓷材料和结构的设计与应用拓展提供了更大的自由度。本
光声传感技术有机结合了光学激发和声学探测两种物理手段,通过探测色素物质吸收短脉冲激光后,因瞬时热弹性效应产生的光声波实现组织光学吸收特性的特异性观测。传统的光声传感通常采用压电型超声换能器对光声信号进行探测,但受制于压电材料的自身物理特性,这类换能器的带宽有限,往往限制在几十兆赫兹。在生物样品中存在尺寸和形态各异的众多光学吸收体(如亚微米级的细胞核、微米级毛细血管、以及百微米级主血管等),它们受激
随着我国绿色建筑技术的快速发展以及计算机辅助设计研究的不断深化,性能导向的建筑设计优化作为一个新兴的建筑创作方法而受到建筑师的广泛关注。在目前的建筑节能设计中,建筑性能优化的运用逐渐增多,尤其针对建筑形体的优化做了大量的研究。然而,建筑设计初期阶段建筑的边界条件尚未确定,例如建筑材料和人员作息,这一情况使建筑形体优化结果的可靠性存疑。为了适应我国绿色建筑快速发展的需求和能耗模拟的准确性,必须对建筑
超精密加工最早应用于航天航空和国防科技等领域,而随着其技术的成熟和市场需求的增加,其在民用领域也得到广泛的应用,如手机镜头、非球面眼镜和光学仪器等。随着科学技术的日益发展和人民生活水平的提高,对具有极高信号传输性能和高质量的光学表面产品的需求与日俱增,而传统的超精密加工材料,如铜材、铝材等,由于其材料性能的限制,很难再满足高性能的需求,因此需要性能更加突出的新材料,而其中比较典型的是非晶和单晶材料
可见光(380-780nm)在整个电磁波谱中仅占很小一部分,因其可直接被人眼所接收,是人类获取信息的主要媒介之一。可见激光即波长处于可见光范围的激光,其在激光投影、医学成像、激光显示等领域具有广阔的应用前景。以Pr3+为代表的稀土粒子受激辐射是获取可见激光最为高效的方式之一。Pr:YLF晶体因其具有相对较大的发射截面和较小的声子能量在众多激光晶体中脱颖而出。在本文中,选用a-cut方向0.3 at