基于二阶Akhmediev呼吸子产生高功率脉冲串

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:lovezjx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着光纤通信技术的不断发展,具有峰值功率高,脉冲宽度窄的超短脉冲成为了科学研究的热点。超短脉冲在光纤传感、光纤通信、光信息存储和非线性光学等领域具有重要的应用价值。光脉冲在光纤中的传输可以用非线性薛定谔方程来描述。理论研究证明,利用非线性薛定谔方程可以得到有限背景上的孤子解。通常有限背景上的孤子解可以分为Peregrine孤子解、Kuznetsov-Ma孤子解、Akhmediev呼吸子解,其中,Akhmediev呼吸子可以用来实现超短脉冲串的产生。本文主要基于二阶Akhmediev呼吸子数值研究光纤中高功率脉冲串的产生及其传输特性,该研究结果可为在光纤实验中基于Akhmediev呼吸子产生脉冲串提供一定的理论基础。本文主要内容如下:(1)论文在介绍孤子概念,孤子解的分类以及光孤子在光纤通信中应用的基础上,对Akhmediev呼吸子以及Akhmediev呼吸子产生超短脉冲串的研究进展进行了总结。(2)从麦克斯韦方程出发,介绍光脉冲在单模光纤中的传输方程及非线性薛定谔方程中Akhmediev呼吸子的精确解,为下一步研究Akhmediev呼吸子产生脉冲串提供理论前提,并简要介绍分步傅立叶数值模拟方法。(3)基于一阶Akhmediev呼吸子,数值研究光纤中脉冲串的产生。理论上,背景波是影响Akhmediev呼吸子产生脉冲串在光纤中传输的关键因素。分别对比讨论三种不同消除背景波产生脉冲串的方法。采用相位叠加法消除背景波得到的脉冲串,可以有效地提高它的占空比,但是脉冲的峰值功率会随着脉冲占空比的提高而有一个明显的减小,在光纤中稳定传输的距离较短。采用干涉叠加法消除背景波,虽然脉冲周期没有发生变化,但脉冲强度有明显增加,稳定传输距离变短。采用光学斩波法消除背景波,脉冲串的峰值功率和占空比不会发生变化,但稳定传输距离随着呼吸子周期的增加而提高。(4)基于二阶Akhmediev呼吸子,数值研究光纤中高功率脉冲串的产生及其传输特性。二阶Akhmediev呼吸子可以看作是两个一阶Akhmediev呼吸子的碰撞叠加。与一阶Akhmediev呼吸子类似,由于背景波的存在,二阶Akhmediev呼吸子的脉冲序列也不能直接在光纤中进行稳定长距离的传输。本文主要采用光学斩波法消除背景波产生高峰值功率脉冲串,该脉冲可以在光纤中稳定地长距离传输。脉冲串的传输距离受脉冲序列的数量和周期的影响,并且脉冲串具有良好的抗干扰能力。此外,还研究了两个周期性扰动叠加来模拟光纤中二阶Akhmediev呼吸子的产生。在脉冲激发位置处进行斩波,得到的脉冲串同样可以在光纤中稳定传输。
其他文献
基于超宽带雷达的非接触式生命体征监测系统是将雷达技术应用于生物监测领域,其目的是通过非接触方式获取目标人体的呼吸和心跳频率。在新冠肺炎全球蔓延的大背景下,医院各方都在寻求更为有效与安全的监测手段,而基于超宽带雷达的非接触式生命体征监测系统,在保护病人生命安全的同时,也为前线医疗人员提供安全保障,集合了高效、安全的监测特征,不仅应用于防疫医疗监测,也适用于慢性病患者或老人居家呼吸心跳等健康体征监测,
语音识别技术在人工智能的推动下再一次迎来发展的热潮。人们迫切的希望在实际的生活当中,也能与智能机器有更好的交流,让机器听懂人们的语言,按照人们发布的指令正确的完成应答操作。但当下,语音识别技术走出实验室进入生活仍存在一些技术性难题。在没有噪声或者噪声很小的环境中,语音识别系统识别效果良好,会有较高的识别率;但当在背景噪声很大,或者识别环境更复杂的情况下,识别系统的性能就不如实验室安静环境下理想。所
语音增强是指从含噪语音中去除噪声,以提高语音质量和可懂度。目前已经有包括卡尔曼滤波在内的多种语音增强方法,其中卡尔曼滤波器的增强性能很大程度上取决于参数的估计精度,但是传统卡尔曼滤波方法中对于参数的估计存在缺陷,这会直接影响到卡尔曼滤波器的增强性能。此外由于早前的研究者认为相位对于语音质量的提高贡献有限,因此多数语音增强方法在对含噪语音进行增强时仅对幅度谱进行处理而相位则使用含噪语音相位直接代替。
混沌信号具有类噪声、高带宽、随机性强等特点,在加密通信、随机数发生器、车载激光雷达等领域有重要应用价值。特别是在激光雷达领域,混沌激光的功率决定了雷达的有效探测距离。因此,实现高功率的混沌激光产生是车载混沌激光雷达发展的必然趋势。1550nm波长处于激光的近红外波段,相比于传统激光雷达使用的800~1000nm波段激光信号,1550nm激光在雾霾、沙尘等低能见度天气下穿透能力更强,对人眼也更安全。
随机数从根本上决定着信息系统的安全,在全球通信安全和金融安全领域起着至关重要的作用。量子随机数的产生基于量子物理的不确定性本质,即量子的内禀随机性,是安全性信息论可证明的真随机数产生方案。在各类量子随机数产生方案中,基于连续变量量子态分量起伏不确定提取随机数的方案因其熵源及测量模型明确、探测系统高带宽、鲁棒性等优势尤具应用前景。对于实际的量子随机数产生方案,系统量子熵含量的严格评估、量子随机数的提
近年来随着无人驾驶技术的发展,激光雷达已经成为无人智能车中重要的环境感知设备,相比于与毫米波雷达,激光雷达具有距离分辨率高、抗交叉干扰能力强、体积小等优点,在高精度测距的同时可以实现高分辨成像。随着激光雷达的大量应用于无人驾驶汽车中,传统的脉冲激光雷达极易受到其他激光雷达的干扰或者人为干扰攻击,使得激光雷达出现探测错误、增加虚警概率,导致激光雷达产生误判,引发交通事故。因此在车载激光雷达领域,高精
天线具有收发电磁波的重要作用,在无线通信系统中的地位不言而喻,近年来无线通信技术飞速成长,系统对天线的要求也随之不断升高。微带天线因其容易和其他设备集成、尺寸小、成本低廉且容易制作等优点得到了广泛的使用,但是传统微带天线增益低、方向性差、带宽窄等缺点也成为众多学者需要攻克的难题。超材料的提出为改进微带天线性能打开了一条新的思路。电磁超材料是一种周期性排列的人工结构,所表现出来的逆多普勒、负折射率等
人体的脉搏波信号中包含了大量的能够显示人体各机能状态的生理和病理信息。其在人体健康的预测判别、疾病辅助诊断等方面具有重大的现实意义和广泛的应用价值,但传统脉诊过程中的非客观化因素,极大的阻碍了脉搏波信号背后隐藏的价值信息的挖掘,使得该生理信号的相关应用范围变得局限。通过设计相应的脉搏波信号采集记录装置,结合多种有效的信号特征分析方法,能够准确客观实现脉搏波信号的特征量化,借助高信息量以及低维的信号
为了从高维的数据中挖掘其内在的价值,并提高数据分析的时间效率,需要提取高维数据的低秩特征。主成分分析算法能够提取数据的低秩特征,提高机器学习算法的计算效率以及机器学习算法的泛化能力。经典的主成分分析算法存在不能提取含噪声数据的低秩特征的缺点,通过对鲁棒主成分分析算法的研究,能够解决传统的主成分分析算法不能提取含噪声数据的低秩特征的这一问题。现有的鲁棒主成分分析算法具有时间效率低下的问题,本文基于此
肌萎缩侧索硬化(Amyotrophic Lateral Sclerosis,ALS)等疾病会让患者逐渐失去自主控制肌肉运动的能力,最终导致功能和认知障碍。脑机接口(Brain-Computer Interface,BCI)技术能够在大脑与外围环境之间构建起一条人为的信息传输通道,是一种可以替代传统神经肌肉通路的新型交互方式。发展脑机接口技术最主要的目的就是帮助患有运动功能障碍的人群重新获得与外界互