【摘 要】
:
碳纳米管(CNT)一直被设想用其他材料来填充,以获得更好的强度、弹性和各向同性等性能,从而创造出具有更强耐久性的新材料。本文采用经典分子动力学的方法,模拟研究了碳纳米管(CNT)中嵌入硅纳米线(Si NW)的复合结构Si NW@CNT在张力下的变形行为。首先,将Si NW嵌入CNT进行拉伸,发现其可以提高锯齿型CNT的最大拉伸强度但是降低其最大拉伸形变,而扶手椅型CNT则恰恰相反。另外,Si NW
论文部分内容阅读
碳纳米管(CNT)一直被设想用其他材料来填充,以获得更好的强度、弹性和各向同性等性能,从而创造出具有更强耐久性的新材料。本文采用经典分子动力学的方法,模拟研究了碳纳米管(CNT)中嵌入硅纳米线(Si NW)的复合结构Si NW@CNT在张力下的变形行为。首先,将Si NW嵌入CNT进行拉伸,发现其可以提高锯齿型CNT的最大拉伸强度但是降低其最大拉伸形变,而扶手椅型CNT则恰恰相反。另外,Si NW@CNT的最大拉伸应变与CNT的直径几乎没有关系,但是主要与CNT的手性有关。对于中空CNT和Si NW@CNT,拉伸强度都与直径和手性有关,并且直径相对较小,拉伸强度相对较大。其次,还比较了CNT和Si NW@CNT在不同管径以及不同的压缩速率下的压缩特性。研究发现,管径和压缩速率都会对其压缩性能有一定的影响,管径越小,其压缩特性越好,具体表现为最大压缩形变率增加和最大压缩强度的提升;压缩速率越快,其形变率和强度也会有一定的提升;不仅如此,将Si NW嵌入CNT形成的复合结构在同等管径和压缩速率下,其压缩特性会有一定的加强。最后,通过结构分析探索了不同拉伸行为的微观机制,包括径向分布函数,键角分布函数以及多边形缺陷的统计数据。结果表明,由于Si NW和CNT之间的范德华力,在最大拉伸变形下,CNT中的C-C键变得更长,更均匀,这是宏观拉伸行为的变化。此外,已经发现在拉伸断裂之后,CNT主要形成由三角形,五边形和七边形缺陷组成的长链,而Si NW@CNT由于缺乏三角形缺陷而不能形成长链。微观结构上的这些差异可能是因为Si NW@CNT中的C-C键增强导致。以上结果为对于Si NW@CNT结构的理解及其应用研究具有一定的参考价值。
其他文献
氨(NH_3)合成是所有生命和许多工业过程的基础,经典Haber-Bosch合成NH_3过程被称为20世纪最有影响力的发明之一,但是高昂的运行成本,复杂的反应条件,相对较低的反应产率,带来了大量的能源消耗。利用可持续能源-光能进行氮气(N_2)还原是现代氮化学领域研究面临的重要挑战。然而,传统的光催化材料大部分只能被紫外光激发且产生的光生载流子极易复合,极大的限制了其应用。此外,由于N_2分子中的
对于流体在非理想介质中的运动,人们通常用Navi-Stokes方程来讨论。Burgers方程是Navi-Stokes方程的典型形式,因此对于随机超声波方程的研究,我们着重讨论随机Burgers模型。
甲亚胺是常用的1,3-偶极子,与具有π系统的烯炔类化合物反应去构建含氮杂环。随着研究的发展,甲亚胺的环合反应更为环保,符合绿色化学的理念。但是甲亚胺的[3+2]环加成反应目
湖泊的分层与混合是热量、溶解氧或者营养盐输送、扩散的关键物理过程。湍流垂向扩散系数Kv描述水体的紊动程度,其是刻画热量、动量的交换、营养物质和气体的交换的主要物理
地理时空数据可视化是把视觉思维、模式辨识和计算机数据存储、处理能力相结合,将地理现象的空间分布、时空变化等利用图形的方式直观地表达出来。地理时空数据可视化是理解
随着信息技术的飞速发展,数据的规模和维度也在爆炸性增长。张量作为向量和矩阵的高阶推广,可以更直观地表示高维度数据的结构性,并保持原始数据的内在关系。基于低秩张量填
随着世界经济、文化的发展,人们的文化观念也发生了极大的改变,文化创意产业相应获得飞速发展。在世界经济市场中,文化创意产业越来越具有市场竞争力。在国家政策上,政府也高度重视文化产业的发展。在2016年,发布了《关于推动文化文物单位文化文物创意产品研发的实施意见》,湖北省博物馆作为宣传中国传统文化——荆楚文化的重要场所,积极响应国家号召,大力发展湖北省博物馆文化创意产业。湖北省博物馆作为荆楚文化的重要
近几年,稀土纳米材料由于具有特殊的光、磁和电学性质在生物检测、太阳能电池、医学成像、半导体气敏元件等领域起着至关重要的作用。在这些稀土纳米材料中,研究主要集中在具
织印剪结合织物是集提花肌理感、印花丰富色彩感、剪花独特质感于一体的创新面料,它是基于织印结合织物的进一步设计。现有的织印结合织物多是采用单纯的叠加设计,织物效果由
由于过渡金属Rh和Ru协同催化的高效率和高选择性,已经被许多化学家深入研究,尤其在C-H和C-C键活化方面取得了巨大成功。特别地,在Rh(I)络合物和2-氨基-3-甲基吡啶协同催化的醛与烯烃以及Ru3(CO)12和2-吡啶甲醇的协同催化促进烯烃与甲酸钠和醇的加氢酯化反应机理中,形成(亚氨基)铑(III)氢化物和烷基化物以及环己基-Ru(II)中间体的三种金属环过渡金属络合物。这三种金属环状过渡金属