【摘 要】
:
随着信息技术的发展以及移动终端的普及,互联网数据不断膨胀。海量信息在丰富人们生活的同时也使得人们难以定位到自己需要的数据。如何帮助用户高效地筛选有用的信息是当前大数据时代亟待解决的问题。推荐系统根据用户历史数据推断用户的兴趣爱好,帮助用户寻找需要的信息,能够在一定程度缓解信息爆炸问题。推荐算法受到学术界和工业界的持续关注,不同类型的技术被相继提出,其中一类代表性算法是协同过滤算法。协同过滤算法简单
论文部分内容阅读
随着信息技术的发展以及移动终端的普及,互联网数据不断膨胀。海量信息在丰富人们生活的同时也使得人们难以定位到自己需要的数据。如何帮助用户高效地筛选有用的信息是当前大数据时代亟待解决的问题。推荐系统根据用户历史数据推断用户的兴趣爱好,帮助用户寻找需要的信息,能够在一定程度缓解信息爆炸问题。推荐算法受到学术界和工业界的持续关注,不同类型的技术被相继提出,其中一类代表性算法是协同过滤算法。协同过滤算法简单高效,主要依据用户的交互数据发现用户的兴趣。可是当用户与商品的交互数据不足时,推荐的效果并不占优势。而在现实系统中,用户和商品往往具有包括文本、图片和标签等丰富的上下文信息,可以为推荐系统提供更多可利用的资源。然而,这些信息在类型和结构上呈现出多样性和复杂性,如何有效融合此类多上下文信息是当前推荐算法面临的重要挑战之一。为此,本文重点考虑了两种不同类型的上下文信息:1)针对离散型的标签数据,以用户、商品和标签为节点,构建“用户-商品-标签”异质网络。在异构图定义多种具有语义的元路径,并以元路径有方向的在异构图上游走,把图的结构信息转为序列形式的数据。元路径能够捕捉到用户(或商品)在离散属性意义下的高阶相关性,并用SPPMI度量这种相关性。2)针对连续型的文本信息,以文本信息表示每个节点的特征,通过拉普拉斯正则化约束度量节点间的文本特征相似度,能够补充用户与用户、商品与商品间的语义相关性。最后根据不同类型上下文特点构建不同的相似度网络,设计目标函数在多种上下文信息网络的约束下进行联合矩阵分解,并学得用户和商品的表征。我们在多个数据集上进行了充分实验,结果表明,融合多种类型上下文信息的协同过滤算法不仅提高了推荐的效果,满足用户个性化需求,而且该方法能有效缓解数据稀疏性问题。
其他文献
如今人们的生活被互联网包围,网络设备需要不间断地运行以满足终端用户的需求,每时每刻都有大量的数据通过公共和私有网络与网络设备进行交换,但互联网与网络设备的开放连接访问在大多数日常网络活动中带来了网络安全威胁。网络入侵检测系统是一种可靠高效的保障网络安全的技术,但目前的网络入侵检测系统仍存在面对不均衡样本时检测的准确率低误报率高的问题,本文研究的基于神经网络模型的网络入侵检测具有重要的理论意义和应用
真实感流体模拟的目标是获得物理真实、视觉细节丰富的流体动画。欧拉网格法是实现真实感流体模拟的经典方法,并随着近年数据驱动技术的兴起受到进一步重视。然而,欧拉网格法的求解过程存在难以避免的精度损失,造成流体细节丢失,降低了模拟质量,影响模拟流体动画的视觉效果。尽管直接提高模拟分辨率能改善模拟精度,但这同时也引起了计算开销的大幅增长。因此,如何在保证性能的同时,适当补偿求解过程中的精度损失,从而增强模
微纳结构因其优异的性能而具有巨大的应用潜力。微纳米纤维作为众多微纳结构中的一种,可以通过多种工艺制造,其中离心纺丝因其产量大和能耗低等突出的优势吸引了越来越多研究人员的关注。离心纺丝作为一种制造微纳米纤维的新工艺,其工作原理是利用离心力将液态聚合物甩出拉伸细化而形成纤维。本文工作以探索离心纺丝的工艺参数为核心展开,包括装置的研发、工艺参数的探索、应用初探和装置的改进与验证。首先开展的工作是设计并构
作为图像和视频中的主要表现对象,研究让机器自动从图像和视频中识别人体的动作行为,具有非常重要的研究价值,也一直计算机视觉研究领域的热点问题。人体行为识别研究在视频监控、医疗保健、智能家居和人机交互等方面具有广泛的应用前景。人体的动作表现,主要是由骨架和关节点间相互牵引协作共同完成,因此人的骨架关节图中包含丰富的动作特征信息,并且骨架信息对尺度、光照和视角等变化具有很强的鲁棒性。在视频流任务中,时序
随着计算机视觉研究和工业生产技术的发展,现实场景感知技术已经在自动驾驶、室内机器人导航、场景识别等人工智能应用领域中得到广泛使用,其中语义分割技术是现实场景感知的关键步骤,它是指对场景数据进行逐元素的分类。以往的语义分割研究大多是面向图像的,而采用三维扫描设备采集的点云则是继图像视频等数据之后出现的新型数据,其包含更丰富的场景信息,目前面向点云的特征提取和语义分割已成为计算机视觉领域中的研究热点。
现代社会智能化发展飞快,公共场所监控摄像头越来越普及,相应的基于监控视频的行人目标跟踪技术也有着广泛的应用前景。近年来,深度学习迅猛发展,基于深度学习的目标跟踪算法性能也提升了不少,但在实际应用场景下,仍存在着许多挑战。本文对目标跟踪挑战中的相似物干扰以及目标遮挡挑战进行了深入分析,以行人为主要跟踪目标,提出了基于光流预测的孪生网络目标跟踪算法,以解决部分跟踪挑战,进而提升目标跟踪算法的鲁棒性。本
与单任务学习(STL)相比,多任务学习(MTL)通过在多任务模型中的任务之间共享信息以获得了更好的分类器。在多任务学习中,目标任务利用多个非目标任务的训练信号所拥有的相关经验信息来提升模型的泛化效果。在训练过程中,每个任务所携带的数据信息都是关于某一领域的信息,但各任务数据之间有所差别。大多数现有的多任务学习方法在训练过程中仅关注训练任务的相关数据,而忽略了训练任务中其他非相关但可能包含有用信息的
随着“云”及大数据时代的到来,校园对出口通向Internet的带宽流量要求越来越高,只要校园网络的内部带宽高于校园出口的带宽,在校园网络的出口边界上都会出现流量瓶颈。当网络出口流量出现瓶颈时,网络管理员能否快速调整网络配置策略以平滑网络流量,成为衡量网络管理水平的重要标尺。本文从作者所从事的网络建设与管理工作实践出发,对校园网络系统架构进行研究,调研分析了目前市场上流行的网络监控系统主要是对网络设
随着分布式、大数据、云计算等信息技术以及传感器和嵌入式等硬件技术的快速发展,使得CPS技术在解决工业中实际应用场景的问题有了多种多样的解决方案。复杂工业中大数据下的CPS系统任务调度过程中容易因为数据高并发、资源异构、任务性质复杂造成系统负载不均衡,导致在任务调度过程中因任务量积累的负载增加无法进行均衡,直至系统宕机。即使目前有许多云计算调度算法能够很好的解决分布式集群系统中的负载均衡问题,但在C
素描画作为一种特殊的艺术风格图像,在信息传递、娱乐等地方都发挥着举足轻重的作用。它是视觉艺术中用于抽象人类对自然场景的感知的最基本的绘画语言之一,建立了指向艺术家视觉记录的紧密链接。随着手机摄像技术和互联网共享的普及,获得高质量的图片比构建艺术场景的模型要容易得多。因此,从照片中绘制铅笔素描的需求就会大大增加。目前,铅笔素描是被人快速完成的作品,并没有被加入很多细节。艺术家通常是使用素描来描绘整体