【摘 要】
:
轻金属Mg具有来源广泛、反应温和、工艺简单、制氢密度高等优势,被认为是具有良好应用前景的水解制氢材料,是近年来的研究热点。但Mg在水解过程中会生成致密的Mg(OH)2阻碍水解反应持续进行,从而使水解动力学与氢气转化率降低,难以在实际中应用。本论文采用球磨法、放电等离子体烧结技术制备了Mg-Bi2O3、Mg-Bi2MoO6/CNTs(碳纳米管)和Mg-BiOCl/CNTs三种制氢材料,改善镁基制氢材
论文部分内容阅读
轻金属Mg具有来源广泛、反应温和、工艺简单、制氢密度高等优势,被认为是具有良好应用前景的水解制氢材料,是近年来的研究热点。但Mg在水解过程中会生成致密的Mg(OH)2阻碍水解反应持续进行,从而使水解动力学与氢气转化率降低,难以在实际中应用。本论文采用球磨法、放电等离子体烧结技术制备了Mg-Bi2O3、Mg-Bi2MoO6/CNTs(碳纳米管)和Mg-BiOCl/CNTs三种制氢材料,改善镁基制氢材料的产氢性能、抗氧化性能。并通过XRD、SEM-EDS、TEM、XPS和DFT理论计算等手段研究了它们的产氢机理。首先,本文通过球磨法制备了过渡金属氧化物镁基复合材料,研究了过渡金属氧化物(Bi2O3、Sb2O3、WO3、MoO3、MoO2、CrO3、V2O5、TiO2)对Mg水解产氢性能的影响。其中Bi2O3和MoO3对Mg具有较好的水解反应的改善效果,以此为基础,进一步选取铋系含氧酸盐作为掺杂剂研究其对Mg产氢性能的影响,其中Mg-10 wt%Bi2MoO6具有较优的产氢性能,其产氢量与最大产氢速率分别为858.4 mL·g-1与1062.6 mL·g-1·min-1。理论计算结果表明Bi原子掺杂可改变Mg的局域电荷分布,增强Mg对H2O的吸附能,并降低H2O解离后H原子的吸附能,促进水解反应进行。然后,以Mg-Bi2MoO6为基础,通过球磨法制备了Mg-Bi2MoO6-C复合材料,研究了碳材料(鳞片石墨(GR)、还原氧化石墨烯(RGO)和碳纳米管(CNTs))对镁基复合材料产氢性能的影响,研究结果显示,以水热法制备Bi2MoO6/CNTs的方式引入CNTs,与直接在球磨阶段加入碳材料的方式相比,前者可以更有效地提升镁水反应的产氢性能。在298.15 K反应温度下,Mg-Bi2MoO6/CNTs的产氢量、产氢率与最大产氢速率分别达到860.9 mL·g-1、99.2%和2172.4 mL·g-1·min-1。进一步对其产氢机理进行研究发现,CNTs覆盖在Mg粉末的表面阻止了Mg的团聚使复合材料球磨后形成了尺寸更小的Mg、并且在球磨过程中发生固相反应原位生成了MoO3与单质Bi,促进水解反应的进行。此外,通过溶液法合成了BiOF、BiOBr和BiOCl,采用球磨法将其与Mg粉进行掺杂并使用放电等离子烧结法制备了一系列Mg-BiOX(X=F、Cl、Br)复合材料。结果表明,BiOCl能有效改善Mg的产氢性能,Mg-BiOCl在333.15 K的反应温度下产氢量为832.3 mL·g-1,产氢率99.1%,最大产氢速率为593.8mL·g-1·min-1。抗氧化实验显示在空气中暴露二十一天后,块体材料产氢率仍有76.3%。机理研究表明,在SPS烧结时BiOCl/CNTs发生固相反应产生的单质Bi与Mg形成腐蚀电池结构,从而促使反应加速进行。
其他文献
多巴胺(dopamine,DA)是大脑产生的一种重要的有机电化学神经递质,其浓度失衡会严重影响中枢神经系统、肾脏和心血管系统的健康,导致多种精神疾病。因此,DA的灵敏检测对神经退行性精神疾病的治疗和预防有着重要的意义。本论文通过制备两种性能优异的还原氧化石墨烯基纳米复合材料作为传感器检测探针,构建了两款无酶电化学DA传感器,实现了DA的高灵敏、低成本检测。研究内容包括以下方面:(1)基于金纳米颗粒
HepG2细胞是一种人类肝癌细胞,是研究葡萄糖对细胞代谢和对不同刺激反应的影响的成熟模型,因为这些细胞可以很容易地在低葡萄糖和高葡萄糖培养基中生长。HepG2细胞作为源自肝脏的细胞系,是纳米材料介导毒性的靶器官之一,HepG2细胞也是一种公认的纳米毒性测试模型。将纳米材料应用于肿瘤疾病的光热或光动力学治疗是当前的研究热点,但通常仅考虑其治疗效果,并没有考虑其代谢机理。纳米材料由于其抗菌性能,越来越
随着科学技术的进步,社会各个方面都在持续发展,我国的道路体系也更加完善,公路系统的发展也能够促进社会的快速发展。在道路工程施工中,不仅要考虑到施工等外在因素,还要考虑到其自身的内在环境因素,如在公路工程中的档案管理。因此,这一环节必须得到强化。本文就公路施工过程中的档案管理问题进行了论述,结合当前的情况,提出了创新档案管理信息化等更加高效的管理方法,使公路工程管理更加完善。
对于废旧线缆料交联聚乙烯(XLPE)的回收与再利用,课题组前期研究发现,采用注塑成型,废旧线缆料XLPE的填充量为10 wt.%,本研究的创新之处是采用模压成型,可将废旧XLPE的填充量最高增加到30 wt.%。由于XLPE具有三维网络结构,进行完全解交联的回收再利用工艺比较复杂,且设备投入比较大。因此本论文采用对废旧XLPE进行部分解交联,以低密度聚乙烯(LDPE)为基体材料,并运用五谷磨粉机将
硼氢化钠具有较高的理论氢含量、环境友好和安全等特点,被广泛应用于水解制氢。然而,放氢动力学缓慢制约其进一步发展,大多数报道的催化剂通常易于在反应中聚集,导致催化活性的丧失。过渡金属具有成本低、氧化还原性强、活性高等特点,若制备出高稳定性、高表面积、分层结构的理想基底来负载过渡金属作为催化剂,有望推动硼氢化钠作为未来燃料电池汽车的动力源。本文以实现高效硼氢化钠水解制氢为目标,依次采用原位还原法、湿法
硼氢化钠水解作为一种高效快捷的制氢手段,需要有效的催化剂参与。贵金属催化剂是硼氢化钠水解的高效催化剂,催化活性极高,而非贵金属催化剂以钴基为主,成本低廉,但都存在稳定性差的问题,为了提高催化剂的催化活性和循环稳定性能,本文分别采用不同的金属框架结构做载体,设计制备了 Co-Ti4N3、Ru NPs-TiO2-Ti3C2和Ru@Co-Ni@NF三种纳米复合催化剂。主要研究内容如下:(1)MXene表
随着化石燃料的急剧消耗和现代工业的飞速发展,开发应用于能源转换和储存的新技术和新材料迫在眉睫。相变材料是一种重要的热能存储与转换材料,有助于解决能源在时间及空间供需不匹配等问题,在太阳能热利用、工业余热回收、电子器件热管理等领域受到广泛关注和研究。在目前研究的相变材料中,以聚乙二醇(PEG)为代表的有机相变材料因其物理化学性质稳定、过冷度小、无相分离、无腐蚀等优势而显示出巨大的应用潜力。然而,有机
数字信息化时代到来,在丰富人们生活的同时随之而来的电磁污染(EM)令人担忧。电磁污染不仅对生物组织产生不利影响,也会对人体健康有害。此外,电磁辐射对电子设备的运作及无线通讯中敏感数据的泄漏等亦有负面影响。因此,急需研究可吸收电磁波的材料来防止电磁污染。相图作为物质系统相平衡的资讯图解,已成为科学研究和解决实际问题的重要手段,确定相平衡关系对于寻找新的吸波材料具有一定的探索推进的意义。本文通过固相法
城市商业区指的是指的是城市中一个商业设施(特别是银行、超级市场、金融中心、商场等企业)聚集的地区,它是城市经济活力最为直观的体现。在新型冠状病毒席卷全球的背景下,商业区所代表的销售业、餐饮业等第三产业遭受的打击尤为严重,其中武汉市作为国内疫情爆发的第一个城市,其第三产业生产总值在2020年第一季度暴跌37.7%。如何实现复杂背景下的城市商业区提取,进而探索商业区在疫情期间的变化规律,是“后疫情时代
地理国情的普查与监测作为国家的一项重要战略需求,可以为公众提供可信有效的地理信息服务。暨于多时相遥感影像的时间跨度长、观测范围广和周期性检测等特点,使用多时相遥感影像进行变化检测一直是遥感领域最为关键的任务之一。伴随着人工智能技术的火热,深度学习方法逐渐代替手工设计特征的传统方法,成为当前变化检测领域的主流方法。但是,当前大多数基于深度学习的变化检测方法受语义分割方法启发,在输出层进行逐像素决策,