【摘 要】
:
伴随着科技的不断革新,无线能量传输技术在便携式电子设备中的应用愈发广泛,其相较于线缆供电方式体现出了更高安全性和便利性。同时伴随着便携式电子设备使用频率的提升,应用中对无线能量传输效率的需求也在逐步升高,因此实现对便携式电子设备进行高效的无线能量传输,对于未来人们生活方式的变革有着重要的意义。随着便携式电子产品的推广与普及,电源管理芯片的设计与研究,已经成为集成电路行业最为关注的问题之一。电源管理
论文部分内容阅读
伴随着科技的不断革新,无线能量传输技术在便携式电子设备中的应用愈发广泛,其相较于线缆供电方式体现出了更高安全性和便利性。同时伴随着便携式电子设备使用频率的提升,应用中对无线能量传输效率的需求也在逐步升高,因此实现对便携式电子设备进行高效的无线能量传输,对于未来人们生活方式的变革有着重要的意义。随着便携式电子产品的推广与普及,电源管理芯片的设计与研究,已经成为集成电路行业最为关注的问题之一。电源管理芯片中,极具代表性的包括有源整流器和低压差线性稳压器(Low Dropout Regulator,LDO),其中有源整流器在无线能量传输系统中扮演着不可缺少的角色,LDO更是拥有低功耗、低噪声、结构简单的特点,且具有良好的负载调节能力,因此在各种便携式电子设备和可植入式电子设备中具有广泛的应用。针对研究所需的相应侧重点,本文基于TSMC 0.18μm工艺仿真实现了包含导通关断延时补偿的有源整流器,基于CSMC 0.35μm工艺设计了无片外电容LDO。本文提出了一种带有快速响应功能的无片外电容低压差线性稳压器(LDO),应用于无线能量传输系统中的接收端电源管理。在提升瞬态响应方面,采用电容耦合方式感知输出端负载跳变,在负载瞬间跳变时可以达到增大功率器件栅极电流的目的,从而增强功率管摆率以提升电路的瞬态响应特性。缓冲级采用AB类超级源跟随器,在不降低电源电压和增加静态功耗的前提下进行环路补偿,且引入负反馈,从而实现低阻抗转化,提高了环路稳定性。采用CSMC 0.35μm的CMOS工艺进行设计和仿真。仿真结果表明,当输入电压范围在2.1~4.8 V时,该LDO的输出电压为1.2 V,最大负载电流为300 m A;当负载电流在2 m A和300 m A间变化,且跳变时间为1μs时,输出电压的最大上冲值111 mV和下冲值为188 mV,响应时间分别为3.2μs和2.1μs。
其他文献
癌症已经成为危害人类健康最严重的全球性疾病之一,并且对全球健康的危害越来越大。到目前为止,完全的切除肿瘤组织仍然是临床治疗癌症的主要方式。但是手术中仅凭肉眼观察,医生很难彻底清除肿瘤边缘不清处的不规则肿瘤。因此,精准且实时的手术导航以提高手术的成功率尤为重要。荧光成像尤其是基于具有高化学稳定性和信号可靠性的聚集诱导发光的荧光分子(AIEgens),具有高灵敏度和实时成像等优点,是手术中指导肿瘤切除
随着生活节奏的加快和社会竞争变得越来越激烈,人们在学习、工作和生活中所面临的心理压力问题也愈发严重和普遍。心理压力过大会给人体带来心理、情绪、认知和行为等多个方面的危害,引发压力相关的疾病。如何通过人体各种生理和行为数据准确地检测心理压力并给予干预一直是研究的热点和重点,但是现有的研究在数据集的构建和识别算法上还存在一些不足。本文建立了一个多模态心理压力检测数据集,并提出了一种多通道生理特征融合的
在实时信号处理过程中,因为快速傅里叶变换算法(Fast Fourier Transform,FFT)运算量远小于加速离散傅里叶变换(Discrete Fourier Transform,DFT)的特点,FFT得到人们的广泛应用。然而随着时代的发展,人们对于信号的实时性要求越来越高,单单靠FFT算法有时候满足不了工程上的需求,于是有人推算出了滑动FFT算法,该算法相较于FFT算法有着更高的实时性,所
随着科学技术的进步,可穿戴器件迎来了巨大的进步,逐渐成为人们生活中不可或缺的一部分。可穿戴器件体积的缩小和功能的集成给生活带来的极大的便利,但功能的增多需要更多的能源支持,体积的缩小给储能系统的设计带来了限制,导致可穿戴器件需要频繁的充电,带来了使用中的不便。人类步行时的振动能量收集能够将步行振动转换成电能输出,为可穿戴器件提供丰富的能量来源。考虑到步行振动的低频、宽带和多方向的特性,本文舍弃了传
随着无线技术在个人通信和军事应用等领域的发展,对有限的频谱资源下通信系统天线的设计要求更高。双极化天线由于可以降低多径效应的影响、增加系统信道容量而被广泛应用于无线系统中。双极化天线实现宽带化,在有限的频谱资源下兼容多种通信标准或支持高速数据传输,可以减少一定工作频带内对天线数量的需求;实现小型化,可以减少载体的空间占用并且易于与载体融合。本文将双极化天线的宽带化和小型化作为主要研究方向,设计了一
现如今,量子精密测量技术已经成为量子信息应用方面的研究热点之一。矢量磁场探测是量子精密测量的重要分支之一,在基础物理、生物医学以及材料科学等领域都有着广泛的应用。金刚石氮-空位(Nitrogen-Vacancy,NV)色心作为一种优秀的固态自旋体系,在量子精密测量领域有着广泛的应用。NV色心具有不同种类的轴向,这一特点为其在矢量磁场探测方向的应用提供了理论支持,并且其轴向信息的准确度直接影响着矢量
量子元胞自动机是新型微纳电子器件技术的代表之一,近十年来,国内外学者对其进行了深入的理论研究。类似于计算机和数字集成电路学科发展的历程,从若干个逻辑门单元结构的创新设计,针对其各项性能参数指标的优化,再到电路规模较大的系统级电路的构建,整个流程遵循了“自底层向上”的原则。区别于经典电路,QCA电路用择多逻辑门替代传统的“与”“或”门进行逻辑综合,配合其独有的时钟机制对电路进行时序分割。相比较晶体管
跟踪人类睡眠姿势和睡眠期间呼吸和心率的生命体征是很重要的,因为它可以帮助评估一个人的一般身体健康,并为诊断可能的疾病提供有用的线索。传统方法仅限于临床使用,基于射频的方法需要专门的设备或专用的无线传感器,并且只能跟踪呼吸速率。由于人类的呼吸和心跳会导致腹部和胸部的微弱运动,这些运动可以对WiFi信号的传播产生一定的影响,而WiFi设备中的细粒度信道状态信息(Channel State Inform
大规模有限周期阵列在军事和民用领域得到了广泛应用,如战机隐身、雷达追踪、目标探测等。在实际工程中,周期阵列经常与天线或微波元器件结合(构成了含周期阵列的复合结构)以提高后者的性能。随着无线通信技术的不断发展,对大规模有限周期阵列及其复合结构的电磁特性分析在精度和计算效率方面都有较高的要求。数值算法是分析和设计有限周期阵列及其复合结构的必要工具。因此,对大规模有限周期阵列及其复合结构的电磁散射特性高
随着物联网的飞速发展,物联网设备变得愈发普遍,越来越多地应用于从消费类电子产品到工业设备的各种场景。然而,物联网设备的广泛部署也使得其成为软件盗版和攻击的目标,软件保护至关重要。未来是物联网的时代,有分析称,2020年底有上百亿台物联网设备连接,而面对一个上百亿设备推广的目标,数以千万计不同应用的需求,x86与ARM架构存在着指令集极为冗杂、专利授权十分高昂和源码难以修改等问题。在这种情况下,第五