论文部分内容阅读
粒子群优化算法(Particle Swarm Optimization,PSO)于1995年被提出,它的出现受到了众多学者们的关注和研究。该算法和传统的优化算法不一样,它实际上是一种新型的群体智能优化算法,主要优点在于其结构简单、参数少、粒子收敛速度快且寻优能力较强。自从该算法出现以来,已经被广泛的应用于多个领域且获得较好的优化结果,包括组合优化,神经网络训练,数据挖掘等方面。但是该算法也存在一定的缺点,例如容易产生早熟收敛、优化精度不高等问题。本文主要针对该算法存在的问题提出改进型的PSO算法,目的在于提高算法的收敛速度和全局寻优能力。并将提出的算法应用于光伏发电系统和特征选择优化问题中,从而进一步验证提出算法的有效性和价值性。主要工作如下:(1)本文一开始着重介绍了算法的原理和公式等方面,包括PSO算法,QPSO算法和GWO算法。同时在PSO的基础上介绍了几种改进方式,并总结了近几年PSO算法的改进策略。之后,通过比较实验数据,验证现有算法的可靠性。(2)针对PSO算法的改进之一,量子粒子群算法(Quantum-behaved Particle Swarm Optimization,QPSO),由于其易于陷入局部最优的缺点,本文提出了一种混沌量子粒子群算法,采用新的混沌公式替代原有的进化公式,加强了QPSO的随机搜索性。之后,在改进型算法的基础上,又加入了一种新的搜索机制,使得粒子能够快速逃离局部最优解,从而寻求全局最好的解,因此该算法整体区域的搜索能力和收敛的速度有了一定的提高。最后,将提出的算法运用于光伏发电系统的最大功率点追踪中,利用该算法的快速收敛性能优化光伏电池板功率的追踪效率,有效的减少资源的耗费,实验证明该算法的有效性。(3)基于PSO算法的收敛精度不高的问题,本文提出了一种新的PSO算法。该算法主要采取了狼群算法的基本思想并结合基本PSO算法而形成的一种新的PSO算法。在算法的进化公式方面,改变了原有的经验参数,并提出了初始化搜索参数,提高了种群的多样性能。同时,将粒子种群划分为层级形式,每层粒子负责各自的搜索任务。由精英粒子带领子级粒子群朝着最优解不断的搜索,由此,更好的提升了算法的收敛精度,加强了全局和局部的搜索能力。最后,将该算法应用于特征选择问题中以证明提出算法的有效性。本文采用了基本测试函数验证提出算法的可行性,实验发现,基本粒子群算法在单峰函数上面的寻优能力较强,但是对于多峰函数的寻优能力不佳,而提出的改进型粒子群算法在单峰和多峰函数上的寻优效果均较好。