【摘 要】
:
蛋白质三维结构预测一直是分子生物学的重要课题,传统实验方法非常复杂且耗时较长。随着深度学习的兴起,RGN(Recurrent Geometric Networks)作为一种深度学习模型已成功应用于蛋白质三维结构预测。该模型通过一条氨基酸序列及相关PSSM(Position Specific Scoring Matrix)信息来预测一条序列对应的蛋白质主链三维结构,其预测结果的精度可以媲美目前最优方
论文部分内容阅读
蛋白质三维结构预测一直是分子生物学的重要课题,传统实验方法非常复杂且耗时较长。随着深度学习的兴起,RGN(Recurrent Geometric Networks)作为一种深度学习模型已成功应用于蛋白质三维结构预测。该模型通过一条氨基酸序列及相关PSSM(Position Specific Scoring Matrix)信息来预测一条序列对应的蛋白质主链三维结构,其预测结果的精度可以媲美目前最优方法。但是,RGN中神经网络的内部复杂性和非线性结构使得模型本身就是一个“黑匣子”,人们难以理解网络获得如此高精度的原因。目前神经网络的解释性发展远远比不上其应用的发展速度,研究人员需要分析神经网络隐藏状态的工作模式,以探究“黑盒”的工作原理。首先,针对神经网络隐藏层的“黑盒问题”,本文提出一种研究神经网络隐藏状态的方法,该方法通过计算不同时间步下隐藏状态的相似度发现隐藏状态的奇偶位置特征。通过分析RGN中双向神经网络不同时间步下的表现,发现后向网络的作用效果远大于前向网络。其次,针对前向网络的响应状态远小于后向网络的问题,本文着重对双向神经网络中的前后网络隐藏层进行比较分析。经过对比发现,RGN虽然使用双向神经网络架构,但是其前向网络的响应效果远小于后向网络,并且前向网络响应随着时间步的改变,在序列末尾突然剧烈增加。通过对以上结果的分析,本文给出的结论是RGN中双向神经网络存在特征学习不均匀的问题。再次,针对RGN隐藏层复杂难以分析的问题,设计并搭建可视化系统以分析RGN隐藏状态。该系统提高RGN隐藏状态分析效率并为研究RGN提供便利。最后,本文在CASP(Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction)7数据集上进行测试,实验结果验证了分析的有效性。
其他文献
作为生命活动中必不可少的大分子,蛋白质-RNA相互作用预测的研究对生物信息学及相关医学领域(如新冠疫苗的研发)有着极大的影响和意义。传统的方法检测蛋白质-RNA相互作用消耗时间长、费用高,因此利用高效快速计算方法以及全面的数据特征表示成为了蛋白质-RNA相互作用预测的研究趋势。同时随着数据量的暴增,在这些海量的蛋白质和RNA数据中有着大量的信息很难被人工发现,因此利用高效的可视化手段对这些复杂的数
现代社会发展越来越迅速,各国在公共安全方面投入的人力物力越来越多。伴随着监控技术的不断发展,许多公共场所都设有监控摄像头,比如公园、学校、医院、超市、车站等。面对复杂的海量的监控视频数据,人工处理效率越来越低,使用计算机处理海量的监控视频变得非常重要。因此,计算机视觉中的行人重识别是一个经典的值得讨论的问题。行人重识别是利用计算机视觉技术,在跨摄像头监控视频中识别并找到需要寻找的特定行人。它对建设
本文提出使用一个非最大任意的五粒子态和一个非最大任意的二粒子态作为量子通道,隐形传送任意的三粒子态的方案。在本方案中发送者要进行三次Bell测量,接收者根据另一个可能接收者的Hadamard操作及测量结果引入辅助粒子并进行幺正变换,则可以概率性的成功实现隐形传送。
近年来,由于计算机技术、控制技术、以及网络技术的发展,使得遥操作技术得到了越来越多的研究者以及社会的注目。由于遥操作系统中加入了公共网络于是出现了“网络化遥操作系统”。但是,网络化遥操作系统中的时延也变得比旧有的遥操作系统更为复杂。而且对于任何遥操作系统来说,时延的存在可能会影响到系统的性能,如果时延过大,则甚至有可能会系统的不稳定。由此可知研究网络化遥操作系统的稳定性具有十分重要的价值。本文主要
异构网络表示学习,是在现实世界各类实体及其复杂关系构成的网络中,学习网络低维稠密独立的向量表示过程;该向量表示解决了大规模网络分析的高维稀疏和可扩展性差等瓶颈问题,成为当前研究热点。现有研究大多是由领域专家事先给出的元路径实现随机游走,然而随着网络节点数量的增加,元路径的选择十分困难且缺乏灵活性。本论文主要对基于随机游走异构网络表示学习进行研究,在考虑了网络的结构信息和语义信息基础上,给出比现有基
随着人工智能和机器人技术的不断提高,面向日常生活的家庭服务机器人也越来越普及,使用自然语言指令提高人机交互体验势在必行。但机器人很难识别并解析人类的自然语言,所以将自然语言指令解析成机器人能够处理的形式完成目标的映射是人机交互最为重要的一环,本课题将围绕此任务展开,并细化为以下几个方面。首先,自然语言指令解析需要进行意图检测和槽填充,为了利用这两者之间的关联性,提出了一个基于Graph LSTM和
蛋白质的空间结构决定着蛋白质的功能,对于推断蛋白质结构之间的进化关系,药物发现和蛋白质设计至关重要。机器学习的进步促进了蛋白质结构预测的发展,使其预测速度由月、天、时提升到了秒、毫秒级单位,而其中代码数量也由百万行减少到几千行。然而,蛋白质结构的预测精度以及稳定性是否符合人们的需求还需要进一步的分析。本文以循环几何网络RGN预测的蛋白质三级结构数据为主要研究对象,从结构比较,可视分析角度以及RGN
随着深度神经网络发展以及大规模数据集的出现,普通图像识别已取得很大成功;然而细粒度图像由于类内差异大、类间相似度高,易受恶劣环境影响,导致其精确识别困难。针对上述问题,提出一种基于双线性的循环注意卷积神经网络(Bilinear Recurrent Attention Convolutional Neural Network,BRAN)细粒度图像识别方法,并应用于海洋细粒度鱼类图像的分类研究中。首先
供暖管道在长期使用中就一直出现热力不均衡问题,在此问题上给居民和供暖工作带来了很多不必要的麻烦。所以,现在主要任务就是先将供暖管道热力不平衡问题处理,给城市居民带来舒适的居住环境。本文主要对供暖管道热力不平衡问题进行研究与分析,并提出主要应对对策。
我们利用两个全同二能级原子与双模真空腔场相互作用并得到了四体近似W态。我们发现不论两原子初始处于Einstein-Podolsky—Rosen纠缠态或者非纠缠态,四体近似W态都能实现。并且四体纠缠随着系统的初始态和失谐量的变化而变化。重要的是,当两原子初始处于Einstein-Podolsky-Rosen纠缠态时,原子-原子,腔场-腔场的纠缠可以达到最大值1.而两原子初始处于非纠缠态时,原子-原子