论文部分内容阅读
广义Orlicz空间若干几何性质及应用
【摘 要】
:
作为近代泛函分析的一个十分重要的分支,Banach空间几何理论在现代数学课题研究中极具意义与研究价值。Orlicz空间是一种特殊的Banach空间。由于其生成函数的多种多样,Orlicz空间也是千姿百态,性格迥异的。而这一特点使得它能够为比较抽象的Banach空间提供充足的实例和反例,并且Orlicz空间在其几何性质上的刻画技巧与方法可以为解决更一般空间的几何问题提供参考思路。由于Orlicz空间
【机 构】
:
哈尔滨理工大学
【出 处】
:
哈尔滨理工大学
【发表日期】
:
2019年08期
其他文献
几何建模于20世纪70年代中期发展起来,它将形体的描述和表达建立在几何信息和拓扑信息上,是把现实世界中的物体及其属性转化为计算机内部可数字化表示、分析、控制和输出的几
在现实生活中,由于人类思想的模糊性、不精确性以及不确定性,传统的数学工具在处理此类问题时失去了其适用性,这便推动了不确定理论的发展.模糊理论(包括模糊集理论、区间模糊集
模糊理论是不确定理论的重要组成部分,对其相关系数和熵测度进行研究具有重要的理论价值和实际意义,是国内外学者研究的热点课题之一。本文在现有文献的基础上,对犹豫模糊信
延迟积分微分方程在生物学、物理学、医学、化学、经济学、生态学以及航天航空等众多科学领域有广泛应用,其理论和算法研究具有毋庸置疑的重要性.中立型延迟积分微分方程是一
区间数理论作为处理不确定性数学理论基础之一,已被广泛应用于工程技术和管理决策等诸多领域中。在模糊聚类、不确定多属性理想决策等实际问题中,两个区间向量间的度量起着关键
[3.3.3.3.6]铺砌和[3.6.3.6]铺砌均是由正三角形和正六边形生成的阿基米德双铺砌. 本文第一章讨论的是阿基米德双铺砌[3.3.3.3.6]中有限子图的哈密顿性.首先在铺砌图[3.3.
设P为平面中的有限点集,如果P的任意k元子集(k≥3)中存在一个点到另外两个点的距离相等,则称P为k-等腰集. 1998年,P.Fishburn对k=4的情形进行了研究,给出了4-等腰集的部分结果。
本文对比了智能家居中的总线技术,并介绍了在智能家居中如何选用高性价比产品,及灯光控制、窗帘控制、背景音乐控制、空调控制等设备技术参数;安全防范接入及实现,以及利用RS
本文的主要工作是构造了求解理想磁流体动力学(MHD)方程组的全局散度为零的间断有限元(DG)方法,和构造了对标量守恒律满足极大值原理的任意拉格朗日欧拉间断有限元(ALE-DG)方