论文部分内容阅读
近二十年来,混沌的控制与同步研究引起了人们极大的兴趣,取得了丰富的成果,本文对此作了简要的综述。首先介绍了混沌的特征和刻画其特征的主要手段,然后介绍了一些混沌控制和同步的方法,在此基础上,本文提出了一些方法用于四维L.C振子超混沌系统的控制和同步,取得了比较好的结果。 四维L.C振子电路系统结构简单,具有复杂的动力学行为,是一个超混沌系统,对该系统进行同步与控制的研究将具有潜在价值。本文针对这个模型做了以下工作。 (1) 考虑到信号在传输过程中会发生失真,通常把公共信道对信号的影响用一个增益数Kc(t)来表示,将混沌信号xi和一个标准直流信号S(t)经过公共信道同时发送,经过公用时变信道后信号失真为Kc(t)xi(t)和Kc(t)S(t),在接收系统的前端设计了一个自适应信号补偿器来恢复信号,补偿器的增益Kr,在文献[115-116]基础上,本文经理论分析得到新的Kr表达式如下: Kr=δ/ln p=δ/KcS 其中δ的值有下列方程确定: δ=-a(KcS)(KrKcS-s)ln p=-a(KcS)~2(δ-S) 模拟结果表明:采用本文提出的补偿增益Kr,可以很快的将信号恢复。 (2) 采用文献[117-118]提出的参数辨识方法,通过选取更一般的增益函数: li(xi)=kxi i=1,2,3 并根据系统输出变量的时间序列给出参数观测器的初始值来进行参数辨识,数值模拟结果表明:采用本文的参数观测器,在系统参数固定或变化的情况下,都可对系统未知参数实现快速高精度辨识,辨识的速度快于文献[117-118]提出的方法;在辨识参数的同时,结合参数补偿器,使两个参数不匹配的超混沌系统同步。 (3) 基于稳定性理论,通过构造Lyapunov函数, V(t)=(x2(t)-y2(t))~2+(x2(t)-y2(t)+(?)2(t)-(?)2(t))~2=e2~2+(e2+(?)2)~2 得到控制器u1=(2-b+a)e1+(1-b)~2e2-e3,采用类似理论分析方法,得到参数不匹配下同步所需要的控制器表达式。理论分析和数值计算表明:采用本文的控制器可使两个超混沌 系统同步。 (4)根据文献[82,104]的结果,采用间歇驱动或滤波反馈可以使两个参数匹配的混淹系 统达到同步,本文选取如下形式的控制器 G。二 (k:;一 k;y;)P(t)= k:(;x;)P(t)十 (:k。)y;p中)i= l,2,3 p(t)=l,nTstsnT+r、p(t)=0,nT+rstsnT+T 对L.C振子超混炖系统进行同步研究,数值结果:采用这种控制器可使两个超混饨系统在参 数匹配和不匹配下都可以达到同步。 (5)采用 APD方法,选取新的驱动信号 S=X1一ex来同步响应系统,理论分析和数值结果表 明:采用本文的驱动信号可以使两个超混饨系统同步,和文献【1141相比,采用本文的驱 动信号可使同步暂态过程更短。 历)利用外部标准参考信号个和/O来控制**振子超混炖系统,基于稳定性理论,通过 构造L)apunov函数, Kgb (xz4L4)‘+N)-L小t4-xzc KO=k0卜ro’十个N-xsN+/N一大0‘ 得到控制器表达式如下: u;=Zr+Zr+。-(1-b)’x。一归一b+。“+x。 11、=aH+W十厂I十*二aS一ie】JU一Q上一0卜那不一K十冽1一o厂o一Ue0/十z/十二I) +PP。*2a+a“/P*lh、cpc/dx4+d(x.)H(x41 理论分析和数值计算表明,采用这种控制器可以将系统控制到固定点和周期轨道上, 基于稳定性分析,选取控制器 D一a十八。了。x。三1 U,=K,X,十K-K,十K.K.K。=< l一 11—K。IK。X。<l 理论分析和数值计算表明:采用这种控制器可以将系统控制到稳定的极限环、ZP、3P等系 统自身的周期轨道。该方法也可以用于其他超混饨系统的控制研究。