带五次项的更一般的非线性Schrodinger方程的有限差分方法

来源 :黑龙江大学 | 被引量 : 0次 | 上传用户:zch_kitty
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文考虑如下带五次项的更一般的非线性Schr(o)dinger方程的初边值问题{iut+uxx+q(|u|2)u-β|u|4u=f(x,t)u, xl≤x≤xr,0<t≤Tu(xl,t)=u(xr,t)=0u(x,0)=u0(x)其中q(s),f(x,t)为已知的实函数,i2=-1,β为大于0的常数.Q(s)=∫soq(σ)dσ,并且Q(s)≤Asp+B,s≥0,0≤p<3,其中A,B均为非负常数.  非线性Schr(o)dinger方程在高能物理、量子力学、非线性光学、超导及深水波等方面的研究中,具有十分重要的作用.而且随着其应用范围的不断扩大,也加深了人们对其研究的深度.  本文主要做以下工作:  首先,针对上述初边值问题,我们给出了具有守恒性质的差分格式.  其次,证明了差分格式拥有两个重要的守恒量,并运用Sobolev嵌入定理和内插不等式对差分格式的解进行了L2和H1模的先验估计,进而得到了差分解的L∞模估计.  最后,我们证明了差分格式的稳定性和差分解的收敛性.
其他文献
本文分析了蔬菜无公害生产中污染物主要来源;探究了控制污染物来源的有效措施。旨在提高无公害蔬菜生产质量,为我国居民提供放心、安全的“菜篮子”。 This paper analyzes
本文应用变分方法和临界点理论研宄了含非局部算子的椭圆边值问题及相关问题解的存在性和多重性.  首先,在第二、三章中,我们在Rn中的有界光滑区域n上考虑如下的含非局部算
众所周知,Musielak-Orlicz空间是一类重要的Banach空间,是经典Orlicz空间的推广。它在经典Banach空间理论及应用的研究中起着重要的作用。Musielak-Orlicz空间的各种性质以及它
本文对铁路指挥调度中心综合布线所涉及的系统、对综合布线系统的要求,以及综合布线系统的设计等进行了介绍。 This article introduces the system involved in the integr
激光加工技术是先进、高效的制造手段,在航空、机械及国防工业等部门已经或有望得到广泛的应用.激光非熔凝加工可使金属薄板在无模具下发生热塑性变形,实现薄板无模成形,或者
《中国共产党党内监督条例(试行)》已经正式颁布实施了,这是从严治党的一项重大举措,是党内政治生活的一件大事。条例是中国共产党成立近83年、在全国执政近55年来的第一部党
测验等值是教育学、心理学中的一项重要研究内容,它对于考试的公平性、可比性、题库建设、教学质量评价和计算机自适应测验都具有重要的意义。但是对于多维结构的测验,如果仍使
在各类工程,金融,数学等领域中,经常要遇到类似下面形式的方程dyt=f(yt)dxt,(0.0.1)其中x是一个多维的驱动信号,f是一列驱动的向量场。1如果x∈C1或者x∈C1-var那么这个方程可以理
网格曲面已经被广泛应用于计算机图形学和几何造型中。随着网格数量的快速增长和质量的不断提高,实际中产生了很多基于人类感知的网格应用,这预示着在处理网格的时候要将人类
近年来,复Banach空间几何理论的研究已经逐渐成为国内外数学工作者所关注的领域。复Banach空间几何性质的讨论起源于向量值解析函数相关性质方面的研究,在研究过程中学者们发现