【摘 要】
:
现代建筑大量使用玻璃幕墙,一般的玻璃幕墙没有光谱选择性,它会使室内温度升高,空调的能耗增大。光谱选择性玻璃幕墙能在保持室内光线明亮的同时,选择性屏蔽自然光中带有大量能量的红外光线,从而减小空调的能耗。目前市场上光谱选择性玻璃幕墙使用的涂层材料以氧化铟锡(ITO)和氧化锡锑(ATO)为主,但是铟、锑元素成本依然较高,选择研究相对廉价的替代物铯钨青铜(CsxWO3)具有十分重要的意义。而且铯钨青铜展现
论文部分内容阅读
现代建筑大量使用玻璃幕墙,一般的玻璃幕墙没有光谱选择性,它会使室内温度升高,空调的能耗增大。光谱选择性玻璃幕墙能在保持室内光线明亮的同时,选择性屏蔽自然光中带有大量能量的红外光线,从而减小空调的能耗。目前市场上光谱选择性玻璃幕墙使用的涂层材料以氧化铟锡(ITO)和氧化锡锑(ATO)为主,但是铟、锑元素成本依然较高,选择研究相对廉价的替代物铯钨青铜(CsxWO3)具有十分重要的意义。而且铯钨青铜展现了更加优越的近红外屏蔽性能和可见光透过性能,特别是Cs0.3WO3,据报道显示Cs0.3WO3涂层的近红外屏蔽性能高达90%且见光屏蔽性能高达70%。石墨烯的电导率可以高达6000 S·cm-1,是良好的半导体二维材料载体,其复合材料被认为是有效的红外阻隔材料。本文主要以钨酸钠、碳酸铯、石墨烯纳米片等为主要原料,采用水热法合成Cs0.3WO3/石墨烯复合材料并运用X-射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、X-射线光电子能谱仪(XPS)、紫外-可见-近红外光分光光度计等测试仪器对样品进行了表征,结果表明水热法制备Cs0.3WO3/石墨烯复合材料的可行性,并对复合材料的性能进行了研究。当复合石墨烯重量比在0.5wt%,水热温度180℃、水热时间48h、煅烧温度600℃的条件下制备的复合材料的晶型,结晶度与性能都较好,复合后Cs0.3WO3均匀分布在石墨烯片上,Cs0.3WO3与多层的石墨烯纳米片构成一个三维空间结构,这使得复合材料的近红外屏蔽性能加强。从近红外衰减角度研究Cs0.3WO3/石墨烯复合材料近红外屏蔽机理,分析Cs0.3WO3与Cs0.3WO3/石墨烯复合材料的粒径分布,透射光谱及反射光谱,计算出消光系数(k)及折射率(n),并通过消光系数与折射率代入Mie散射公式中,再计算出衰减因子(Qatt)、散射因子(Qsca)、吸光因子(Qabs),结果表明Cs0.3WO3/石墨烯复合材料的近红外屏蔽增强是光在材料散射与吸收协同效应的结果,即拥有更大的衰减因子。将具有优异光学性质的Cs0.3WO3/石墨烯复合材料粉体经球磨后与水性树脂以及其他助剂进行混合涂覆于玻璃基底上,制备出了具有明隔热性能的有机无机复合涂层,并对球磨时间、水性树脂种类、浆料用量等工艺条件进行了探究。结果表明球磨时间为90min,水性聚氨酯为成膜树脂,浆料用量为30wt%的所制备的复合涂层具有优异的物理性质与光学性质。将Cs0.3WO3/石墨烯复合涂层与目前市场上主流的隔热透明涂层对比,发现Cs0.3WO3/石墨烯复合涂层具有良好的应用前景。
其他文献
近年来,随着人们对有机材料光、电、磁性质的认识加深,有机光电功能材料受到全球学术界和工业界关注。有机光电功能材料是一类具有独特化学及物理性质的有机小分子、高分子、超分子材料,从本质上讲,它们也可以被视为一类有机颜料。这类分子结构都具有相同的特点:π-π共轭键和发色基团,吸收谱范围在紫外、可见及红外区域,并且在吸收的同时发射荧光或者磷光。这类分子在光、电、热等作用下可表现出不同应用价值的新特性,这些
光学显微镜自诞生开始便与生命科学联系在一起,打开了人类认识微观世界的大门,其中里程碑式的发展便是荧光显微镜的发明。然而衍射极限的存在使得传统的光学显微镜不能分辨得出尺度在200纳米以下的物体。想要超越这个分辨率极限,科学家们发展了各种超分辨显微术。但是这些超分辨方法都是基于荧光探针的,而荧光有其固有的缺陷。因此我们提出了利用拉曼散射来做超分辨显微成像。拉曼光谱被誉为分子指纹谱,因为其通过振动转动能
空气的相对湿度是生活和生产环境中的重要参数。近年来,膜接触器由于在溶剂吸收和膜分离方面的优势而被广泛应用于液体除湿。通过半透膜间接交换热和水蒸气,该技术不仅有效解决了传统除湿器液滴夹带的严重缺点,而且能利用低品位能,具有效率高、能耗低和环保等优点。在除湿过程中,溶液吸收了空气中的水蒸气而释放大量的潜热无法被带走,溶液温度升高导致其吸湿性能下降。内冷型膜式液体除湿技术已被提出能有效地改善溶液的除湿性
面对日益严重的环境污染,寻求高效降解有机污染物的手段已经成为目前的关键问题。相比降解周期长的微生物法,能耗大的电催化法,利用储备丰富且无污染的太阳能转化为具有利用价值的化学能的光催化方法从而达到降解污染物的目的是目前一大研究热点。由于光催化能量小,激发光生电子空穴易复合,对光的利用率低,无法得到真正的实际应用。因此,选择制备对光吸收利用度高、易受可见光激发且在反应过程中不易发生电子空穴重组的高效降
香草醛作为世界第三大食用香料,广泛应用于食品、医药、化妆品、烟草等领域。天然香草醛可从香草豆荚中提取得到,但产量少,且价格昂贵。通过微生物或酶法转化获得的香草醛属于天然香草醛,并且生产成本低,是最具有发展前景的替代方法之一。异丁香酚单加氧酶(IEM)是催化前体物质异丁香酚转化为香草醛的唯一关键酶,但现有的异丁香酚单加氧酶由于受到产物抑制而导致酶活不高,因此采用生物催化法催化转化生产香草醛的难题主要
苝系衍生物应用非常广泛,从工业染料到分子光电器件。作为一类重要的功能型材料,苝二酰亚胺衍生物有很多优点,它结构稳定,具有很好的光电性质,有很高的热稳定性,并且在可见光区表现出很强的吸收及荧光等特点,这就使得它能够在太阳能电池,固态光伏器件,场效应晶体管等领域广泛应用。在本论文中,我们主要对苝酰亚胺的酰亚胺位和主体共轭结构进行了改性和修饰:通过对酰亚胺位进行取代修饰,合成出了一系列具有非对称结构的苝
消费品中可能添加不同种类的有毒有害化合物,这些化合物在消费品日常使用过程中,可以气态和颗粒态的形式释放到环境中,极易通过呼吸道、口腔和皮肤等不同途径进入到人体,进而对人体健康造成潜在威胁。大多数针对消费品中污染物的风险评估基于化合物总浓度,这可能导致风险的高估,采用生物可利用部分进行风险评估是更为准确的做法。本论文研究了书包样品中短链氯化石蜡(SCCPs)和橡皮样品中邻苯二甲酸酯(PAEs)的污染
超级电容器结合了化学电池与传统电容器共同的优点,既拥有传统的电容器的充放电功率,也具备普通电池大量储备电荷的能力,是一种绿色环保与性能优异并存的新型储能装置。它因具有高功率密度和良好的循环寿命以及快速的充放电速度而被广泛研究,这为构建更先进的混合能源存储系统提供了很好的发展契机。在超级电容器的各个组成部分中,电极材料起到了不可或缺的作用,其种类和性能极大程度上决定了器件所表现出来的整体性能和应用场
银纳米线(Ag NWs)具有多种优势,如优异的机械强度、良好的柔韧性,并具有高透明度和高导电性,可以进行低成本、大规模的生产,被广泛应用于各种电子器件中。因此,一维导线和零维粒子之间的过渡对于纳米材料的应用具有重大意义。众所周知,由于纳米材料具有明显的小尺寸效应以及表(界)面效应,其表面活性较高,在低温条件下原子扩散现象严重,因此,Ag NWs的融化温度比块体银要低很多(961.3℃)。很多研究表
在高级数控机床、工业机器人、复杂加工设备中存在大量的轮廓控制过程,轮廓控制的目标是使被控对象按照期望轨迹运动。轮廓精度直接影响产品加工质量,因此,实现高精度的轮廓控制,对高精密加工制造业来说具有重要意义。本文以无铁芯永磁同步直线电机(Ironless permanent magnet synchronous linear motor,IPMSLM)为对象,以d SPACE实时控制平台、商用电流驱动