论文部分内容阅读
水利工程建成运行后,库水位周期性涨落,扰动了库岸固有的地质环境,库岸滑坡水力边界改变,原有平衡被打破,大量古滑坡复活和新滑坡产生,对库区人民生命财产安全构成巨大威胁,科学有效地避免和减轻库岸滑坡的危害对保障库区社会经济的可持续发展十分关键。库区常见一些古滑坡经过多期次滑动,滑坡内具有多个滑体和滑带,变形同时受到多个滑体和滑带的控制,在库水位涨落和降雨影响下,不同区域呈现出差异化变形,此类滑坡在水库蓄水运行后的变形机制、破坏模式、稳定性及位移预测的研究是当前国内外学术界和工程界的前沿课题之一。针对此课题,本文选取三峡库区藕塘滑坡为研究对象,滑坡为巨型顺层基岩古滑坡,整个滑坡由斜坡岩土体经过三期次滑动后产生的三个滑坡体组成(第一期次滑坡、第二期次滑坡、第三期次滑坡),第一期次滑坡临江,前缘被库水淹没,第二期次滑坡超覆在第一期次滑坡后缘上,第三期次滑坡超覆在第二期次滑坡后缘上。三峡水库蓄水后,藕塘滑坡出现明显的复活迹象。本文在全面收集和分析了藕塘滑坡勘察与监测资料的基础上,首先,开展大量野外工程地质调查,明确了滑坡地质结构特征与空间形态;进行现场取样,借助X射线衍射仪、X射线荧光光谱分析仪、扫描电镜等仪器设备,对滑带土矿物组成、化学成分、微观结构及滑坡区水化学成分进行了分析,进行物理力学试验获得了滑坡岩土体物理力学参数;然后,通过分析地表变形迹象和现场监测数据,研究了滑坡的变形特征,并运用灰色关联法定量研究了滑坡地表位移与库水位涨落-降雨的关联度;根据库水位涨落-降雨作用与滑坡变形的关联关系,开展大型物理模型试验,研究了库水位涨落和降雨作用下滑坡变形演化机制和失稳破坏模式;然后,建立藕塘滑坡数值模型,运用数值模拟和极限平衡法,分析了一个自然年里的库水位涨落和降雨作用下,滑坡渗流场和稳定性系数变化规律;并更进一步,基于正交设计法,研究了藕塘滑坡内各滑体对稳定性影响因子的敏感性;最后根据库水位涨落和降雨作用下藕塘滑坡变形特征、机理及稳定性变化特征的研究成果,基于自适应噪声完备集合经验模态分解(CEEMDAN)和门控循环单元神经网络(GRU),提出了滑坡位移CEEMDAN-GRU耦合预测模型。相关主要研究成果与结论归纳如下:(1)滑带土矿物组成、化学成分、微观结构,滑坡区水化学分析,滑坡岩土体物理力学性质的研究。滑带土的物质组分中以石英、长石和黏土矿物为主,滑带土中黏土矿物占比高,亲水的黏土矿物遇水后产生吸水膨胀性、水致软化是滑坡稳定性下降的重要因素之一。滑带土电镜扫描试验表明,滑带土具有明显线性擦痕和黏土矿物的定向排列微结构特征,滑带土叠片状颗粒微结构致使其微观的力学特性呈现显著的方向选择性。滑坡区长江流水、雨水与滑坡体内地下水的化学成分组成差异性较大,雨水渗入滑体并与岩土体产生复杂的水离子化学反应,致使水质变化。对滑带土进行物理力学性质实验,得到了相关物理力学参数。(2)滑坡变形特征及其与库水位涨落-降雨关系研究。藕塘滑坡整体处于持续性蠕滑变形过程中,组成滑坡的各期次滑坡体主滑方向一致,但蠕滑产生的位移差异较大,第三期次滑坡位移>第二期次滑坡位移>第一期次滑坡位移。位移呈阶跃式增长,每年5到9月之间增长较快,位移快速增长时间段与库水位迅速下降、雨季的时间段较为吻合。第一期次滑坡变形对库水位下降的响应程度更大,第二、第三期次滑坡变形对降雨响应程度更大。(3)库水位涨落和降雨作用下滑坡变形演化机制和失稳破坏模式研究。(1)库水位涨落对第二、第三期次滑坡的应力场未造成明显影响,其影响范围主要在第一期次滑坡区域,第一期次滑坡的变形失稳会引起第二、第三期次滑坡稳定性变化,产生变形。库水位以1m/d、2m/d、3m/d三种速度上涨作用下滑坡皆不会产生大的变形,仅在坡脚产生微小裂缝,水位上升速度越快,浮托力增长越快,微小裂缝越明显。相比库水位上涨作用的影响,库水位下降作用对第一期次滑坡体稳定性影响更大,库水位下降速度越快,造成的滑坡变形越大,当库水位快速下降时,第一期次滑坡坡脚局部发生牵引式崩滑的风险大,藕塘滑坡为动水压力型滑坡。(2)藕塘滑坡受降雨作用时,普通降雨对滑坡稳定性影响不大,滑坡无明显变形产生。强降雨对第一期次滑坡坡脚和第三期次滑坡稳定性影响显著。水的软化作用、坡内雨水的外渗及雨水冲刷是造成第一期次滑坡坡脚失稳的主要原因;较陡的坡形,降雨导致的自重增加,水向下渗透产生的下滑力及岩土体的浸水软化是造成第三期次滑坡相较于滑坡整体沿滑带产生了更大蠕滑变形的主要原因。(3)库水位下降是第一期次滑坡变形的主要控制因素,库水位快速下降作用对第一期次滑坡的影响大于强降雨作用的影响大于库水位快速上涨作用的影响。降雨是第二、第三期次滑坡变形的主要控制因素。(4)库水位快速下降和强降雨联合作用的条件下,藕塘滑坡失稳模式为第一期次滑坡坡脚局部崩滑、第三期次滑坡体滑移,藕塘滑坡发生沿基岩面整体滑移破坏的可能性不大。(4)滑坡稳定性及其影响因子敏感性分析。库水位175m,无降雨时,滑带1控制的滑体稳定性>滑带2控制的滑体稳定性>滑带3控制的滑体稳定性。滑带1控制的滑体稳定性主要受库水涨落影响,库水位上涨,滑体稳定性上升,而库水位下降,滑体稳定性下降。滑带2和滑带3控制的滑体稳定性主要受降雨影响,其中滑带3控制的滑体稳定性受降雨影响下降更大。滑带1控制的滑体对稳定性影响因子敏感性顺序为:滑带内摩擦角>库水位变化速率>滑带黏聚力>滑体渗透系数>降雨量;滑带2控制的滑体对稳定性影响因子敏感性顺序为:滑带内摩擦角>滑带黏聚力>滑体渗透系数>降雨量>库水位变化速率;滑带3控制的滑体对稳定性影响因子敏感性顺序为:滑带内摩擦角>滑体渗透系数>降雨量>滑带黏聚力>库水位变化速率。各滑带控制的滑体稳定性系数变化率受内因(滑带内摩擦角、滑带黏聚力、滑体渗透系数)变化影响大,受外因的变化(库水变化和降雨)影响较小,但是如果外因作用下使得滑坡的内因发生改变,则外因会对滑坡稳定性产生明显的影响。(5)滑坡位移预测模型研究。针对滑坡演化的动态系统本质,提出了滑坡位移CEEMDAN-GRU耦合预测模型。模型首先利用CEEMDAN将滑坡总位移分解为趋势项和波动项,采用单变量GRU模型预测趋势项位移;基于库水位涨落和降雨诱发藕塘滑坡变形的特征和机理分析,选取合理的变形影响因素,采用多变量GRU模型预测波动项位移,并与多变量SVR和多变量BPNN模型对比。结果表明,考虑诱发因子的多变量GRU模型的预测精度优于SVR和BPNN等模型,且在预警关键的阶跃式变形期的预测优势尤为突出。其良好的预测能力归因于该模型实现了状态反馈,能更好地反映滑坡演化的动态系统本质,且该模型具有记忆功能,能够充分利用滑坡历史信息,从而有效提高位移预测精度;此外,模型独特的设计结构使其不依赖于训练数据时效性的分析。