带二次补偿的两阶段随机规划的稳定性

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zhfly6278
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
两阶段随机规划(Two Stage Stochastic Programs)是指第一阶段问题的决策可以通过第二阶段问题的最优决策来补偿的随机规划问题.这类问题在资源配置、金融经济等领域有着广泛的应用.因为实际问题中随机变量的概率测度很难精确获得,常常需要考虑近似模型,所以在设计算法求解这些问题时,渐近理论起着重要作用.另外,随机二次规划可以应用到很多问题中,尤其是经济金融问题.但是已经存在的两阶段随机规划的稳定性结果主要是关于线性补偿的情形,对于非线性补偿的情形还有很多工作需要做.因此,带二次补偿的两阶段随机规划的稳定性分析是非常重要且有必要的,而且是对线性模型相应结论的推广.本论文主要研究带二次补偿的两阶段随机规划问题和该问题在占优约束优化中的应用,以及两阶段分布鲁棒风险优化问题.本论文所阐述的主要研究结果可概括如下:1.第三章研究的是凸二次规划问题的最优值函数关于参数在Hadamard意义下的方向可微性.首先,当问题的所有参数都发生扰动时,基于可行集映射关于这些参数的连续性,分别建立了二次规划问题和限制Wolfe对偶问题的最优解映射的上半连续性以及水平集的局部一致有界性.其次,利用这些性质把二次规划问题等价表示为两个紧凸集上的极小-极大优化问题,并借助该结构证明了最优值函数的Lipschitz连续性和Hadamard意义下的方向可微性.2.第四章研究的是带二次补偿(Quadratic Recourse)的两阶段随机规划问题关于概率测度的定量稳定性.首先,建立了限制Wolfe对偶问题的可行集映射在Hausdorff距离意义下关于随机参数的Lipschitz连续性.因为带二次补偿的两阶段随机规划问题的目标函数主要由二次规划的最优值函数组成,利用对偶可行集映射的Lipschitz连续性,证明了两阶段问题的目标函数的局部Lipschitz连续性.从而引入与模型相适应的概率测度的Fortet-Mourier度量.利用该度量与最小信息度量的大小关系,基于己有的模型关于概率测度在最小信息度量意义下的稳定性结果,得到了带二次补偿的两阶段随机规划问题的最优值函数关于概率测度在Fortet-Mourier度量意义下的Lipschitz连续性和最优解映射的上半连续性.最后,利用此结果分析了经验近似模型的渐近行为.3.第五章研究的是由二次补偿诱导的k-阶占优约束优化问题关于概率测度的定量稳定性以及对应的分布鲁棒约束优化问题关于不确定集中的参数的定量稳定性.首先,不同于第四章,这里考虑可行集有界且目标函数中的半正定矩阵参数可以任意扰动的二次规划问题.利用二次规划可行集映射的Lipschitz连续性证明了带二次补偿的两阶段随机规划问题的目标函数的局部Lipschitz连续性.然后,考虑所有满足局部Lipschitz连续性和上界条件的函数,定义了与占优约束优化问题相适应的概率测度的伪度量并证明了问题的可行集映射关于概率测度在该伪度量意义下的Lipschitz连续性.基于此,得到了问题的最优值函数关于概率测度的Lipschitz连续性和最优解映射的上半连续性.最后,利用该伪度量和全变差度量(Total Variation Metric)的大小关系,基于参数不确定集在全变差度量意义下的连续性结果,建立了参数不确定集在该伪度量意义下的Holder连续性.进一步,分别证明了对应的分布鲁棒约束优化问题的可行集映射、最优值函数和最优解映射关于不确定集中的参数的定量稳定性结果.4.第六章研究的是带线性半定补偿的两阶段分布鲁棒风险优化问题的定量稳定性.首先,构造了某种度量或者伪度量意义下ζ-球结构的含参的不确定集,并建立了不确定集在全变差度量意义下的误差界结果和分布鲁棒风险优化问题的目标函数的Lipschitz连续性结果.其次,分析了分布鲁棒风险优化问题的最优值函数和最优解映射关于不确定集中的参数的定量稳定性.最后,当目标函数由两阶段线性半定规划诱导且问题的所有参数都随机扰动时,通过验证两阶段问题的目标函数的局部Lipschitz连续性,将已经建立的稳定性结果应用到这个例子中.
其他文献
由于激光场与分子的相互作用在物质结构探测、量子计算、受控化学反应、大气环境治理、国防军事建设等方面具有广泛的应用价值,因此,随着激光技术的发展,相关研究受到了越来越多的关注。激光场的强弱没有严格界限,一般根据分子与激光相互作用的程度,将激光场分为弱场(1015 W/cm2)。因
大学生是国家的希望、民族的未来,面临着在实现"两个一百年"奋斗目标、实现中国梦舞台上接力奋斗、建功立业的时代使命。新时代加强大学生爱国主义教育的有效路径应该从四个维度加以把握:理论维度,加深理论认知以增强国家认同;情感维度,营造共情情境以涵育爱国之情;文化维度,构建爱国主义文化以砥砺强国之志;实践维度,筑牢实践发展之基以笃定报国之行。
由于地区间人口年龄结构存在显著区别,老龄化对不同地区产业结构优化造成的影响也呈现出差异性特征。本文分别从理论模型和实证模型两个角度阐释不同区域老龄化和产业结构优化之间存在的非线性特征和空间溢出效应。通过建立门限面板模型和两区制空间杜宾模型发现,在低老龄化地区,老龄化对区域产业结构优化存在显著促进作用,而在老龄化程度较重的地区,老龄化则阻滞产业结构优化调整。同时劳动力流动对地区产业结构优化调整存在显
上部结构位于浪溅区的海洋结构物,如海洋平台、海上栈桥、开敞式码头以及海上高速公路桥等建筑物的安全性与经济性时常面临着波浪冲击的威胁。强大的波浪冲击会造成结构物的局部损坏或整体坍塌,影响海洋结构物的正常运营。近年来,对波浪冲击结构物过程的流场变化和力学特性的研究在海岸和近海工程领域越来越受到重视。波浪与结构物作用涉及复杂的气体-液体-固体相互作用,系统性的研究空气相在冲击过程中对结构物影响的试验还较
氧化铝基共晶自生复合陶瓷具有优异的力学性能、高温组织稳定性、抗氧化和抗腐蚀性能,被认为是能够在1600 K以上氧化气氛中长期稳定服役的理想高温结构材料。目前,关于共晶陶瓷的研究主要集中在制备技术开发方面(如,微拉法、边界外延生长法、激光加热浮流区法等),并偏重于工艺参数、组织结构及力学性能的研究,然而关于凝固机理及微观结构调控方面的研究较少。本文以A1203/Zr02(Y203)共晶陶瓷为研究对象
本发明公开了一种橡胶助剂废水资源化处理系统及其资源化处理方法,橡胶助剂废水资源化处理系统包括沉淀气浮池、MVR蒸发系统、树脂吸附解吸系统、Fenton氧化系统和出水池;沉淀气浮池、MVR蒸发系统、Fenton氧化系统和出水池上均设置有进口和出口,树脂吸附解吸系统上设
期刊
目的:探讨原发性支气管肺癌伴发焦虑情绪的发病危险因素。方法:对2020年8月至2020年12月于中国中医科学院广安门医院肿瘤科治疗的350例原发性支气管肺癌患者进行横断面调查。采用肺癌患者基本情况调查表、肺癌患者病史资料收集表、医院焦虑抑郁量表(HADS)采集数据,若患者焦虑情绪阳性,归为焦虑组,反之归为非焦虑组,使用SPSS 23.0进行统计学分析,探讨原发性支气管肺癌伴发焦虑情绪的发病率及危险
在数值逼近,几何造型,工程计算等领域中,样条是一种普遍适用的方法.这些领域的研究给多元样条方法的理论提出了新的问题.例如,对标准的NURBS方法引入局部修改算法以突破矩形网格的限制,完善新提出的T网格上的样条方法的理论基础,并进一步扩展和完善不规则网格剖分下的可局部加细的样条方法.对这些问题的分析并结合多元样条的方法,我们发现基于层次网格的自适应加细的样条方法具有很好的适用性并能得到满意的曲面拟合
组合矩阵是组合数学中的基本研究对象,本文研究了只具有实特征值的组合矩阵的若干解析性质,如矩阵的全正性、矩阵作为双指标序列的渐近正态性、矩阵的(p,q)-交替性等.主要研究内容分为以下三个部分.第一部分研究Delannoy三角的解析性质.Delannoy三角与经典的组合矩阵Pascal三角具有很多共性,它们的元素都具有丰富的组合解释.本部分首先研究了 Delannoy多项式的零点,证明了 Delan
优化方法是解决底层视觉问题的重要手段之一。它借助人们对视觉问题的经验知识建立优化目标函数,然后采用理论分析较为完善的数值迭代算法进行求解,但通常会因为目标函数过于复杂而求解困难。一些方法采用直接在迭代中插入深度网络结构建立可学习优化算法来避免复杂求解,但这种简单粗暴的结合导致算法的稳定性、收敛性等理论结果遭到破坏。本文瞄准该问题展开研究,通过精细的设计,提出了一系列具有稳定性或者收敛性分析的可学习