复杂环境下移动机器人避障控制算法的研究

来源 :天津工业大学 | 被引量 : 0次 | 上传用户:lihuihui1986712
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技的进步以及工业和制造业的快速发展,机器人逐渐被人们熟知并扮演越来越重要的角色。近年来,移动机器人以结构简单、易于控制、适合二次开发等优势成为研究热点。而在移动机器人领域的众多研究方向中,避障以及安全性研究是其中非常基础与重要的内容。本文以移动机器人为研究对象,对移动机器人在多种障碍物环境中的避障性能以及安全性、实用性问题展开深入研究,并以Turtle Bot3机器人为实验平台,利用ROS(Robot Operating System)操作系统完成算法的实现。其主要工作如下:首先,对机器人操作系统及应用进行介绍;描述了Turtle Bot3移动机器人系统总体框架和相关硬件部分;在坐标变换以及运动原理的基础上建立移动机器人运动学模型;对ROS通信机制、话题的发布、接收等内容进行描述。其次,考虑到实际应用环境中移动机器人的安全性问题以及可能存在的未知障碍物对移动机器人避障的影响,本文对动态窗口法的评价函数进行改进,提出了运动轨迹均值评价法。该方法综合了末端值法和累加求和法的优点,既不会排除较大速度,又能与周边障碍物保持合适的距离。另外,针对不同稠密度的静态障碍物对移动机器人避障的影响,提出了速度权值可变的自适应动态窗口法。通过实验对所设计方案的有效性进行验证。再次,在多移动机器人动态避障算法研究过程中,分析了相互速度障碍法的优点与不足。针对相互速度障碍法避障速度理论可选而实际应用不可达的问题,综合考虑相互速度障碍法和动态窗口法的优缺点,将两种算法进行融合,对可选避障速度进行运动学约束;进一步,针对复杂环境下多移动机器人相遇过程中,由于膨胀半径的影响可能导致移动机器人避障失败的问题,又提出了膨胀半径可变的自适应相互速度障碍法。该方法可以通过判断周边环境的复杂度对膨胀半径进行调整,既保障了移动机器人与周边障碍物的安全距离又适当加大了可选速度范围;此外,还提出了模糊终点概念,解决了移动机器人在特定环境中的“摆动”问题。通过实验验证了上述算法的有效性。最后,利用ROS机器人操作系统和Turtlebot3移动机器人在实验室的真实环境中,对所提算法的可行性进行了进一步的验证。
其他文献
近年来,神经网络已经广泛应用于图像处理,故障诊断,复杂系统控制等各个领域。众所周知,神经网络系统的许多应用很大程度上都依赖于其动力学行为,尤其对于平衡点的存在性和稳定性。而且,在实际的应用中由于放大器的转换速度和信息处理速度有限,导致时滞在神经网络系统中往往是难以避免的。时滞的存在,不仅会使系统的性能降低,而且会导致系统不稳定甚至紊乱。在许多实际问题中,还存在一种不同于传统时间延迟的典型时间延迟,
最近,耦合神经网络的同步等动力学行为受到了学界广泛关注。在研究耦合神经网络同步现象过程中系统解的收敛速度是一个重要但很难被准确估计的指标。因此,能够准确提供系统解收敛速度的衰减同步逐渐成为研究热点,同时,值得注意的是在现有的可以查到的相关文献中,耦合反应扩散神经网络的衰减同步还没有被考虑过。因此本文研究了多权重的状态耦合以及空间扩散耦合的反应扩散神经网络的衰减同步。接着,本文以现有的衰减同步和H∞
多层多道焊接方式常用于航空航天和船舶制造等工业领域里中厚板工件的焊接,是一种非常重要的连接工艺方法。而基于激光视觉传感器的机器人智能化焊缝跟踪方式以其价格低廉、抗干扰能力强和精度高等巨大优势成为应用最广的方法。然而,在进行实际焊缝跟踪时,利用视觉传感器获取的焊接图像不可避免地会受到强反射、飞溅和电弧噪声的污染导致无法保证焊接的稳定性和精确性。因此,对基于激光视觉的多层多道焊缝跟踪进行研究具有重要意
在科学研究和工程技术领域,优化问题无处不在,但这类问题往往带有复杂的约束条件使搜索过程复杂化,加大了解决问题的难度。在过去的几十年里,进化算法被广泛应用于求解优化问题。然而,单纯只用进化算法来解决约束优化问题是不准确的,因为它们不能直接减少约束问题的约束偏移。因此,对于约束优化问题,如何能够设计出有效处理约束且能找到最优解的算法即为本文的研究重点。本文主要从进化计算中约束处理技术的角度出发,结合有
近几十年来,多智能体系统的分布式协同控制引起了越来越多研究者的关注,其研究方向涉及传感器网络、编队控制、一致性问题、航天器姿态跟踪控制、分布式优化计算和控制工程等各个领域。一致性问题是多智能体分布式协同控制的基本问题,其目标是指一组智能体基于局部交互规则在一定的物理量上达成一致。在现有的研究基础上,本文研究了二阶多智能体系统的一致性问题,主要从以下两个方面展开研究:在实际的多智能体系统中,由于智能
随着科技的迅猛发展,许多工程应用都需要大量的决策变量来解决问题,这种大规模问题的优化将对现有的优化算法提出挑战。由于决策变量的数量较大,所以问题的搜索空间也是巨大的,甚至是无限的,这就使得问题难以入手求解。此外,在这巨大的探索空间中,必然存在着许多伪全局最优值,这些值将影响算法并使其陷入局部最优,从而失去了搜索全局最优的机会。针对大规模问题的优化,通常使用两种优化技术:一是基于分解技术的协同优化框
神经网络的发展和大型数据集的增多,以及计算机硬件运算能力的提升,使得基于深度学习的技术在单模态(图像、文字、语音)已经取得的巨大的发展和应用。但是,多模态理解和交互等人类高级认知和推理功能还是很弱。针对这个问题,本文研究多模态交互领域一个极其重要的研究课题——视觉问答(VAQ)。视觉问答涉及图像和文本两个模态的信息,由于卷积神经网络(CNN)和循环神经网络(RNN)分别在图像和文本上的突出表现,许
随着汽车自动避障技术和服务机器人的逐渐发展,路径规划已经成为了移动机器人技术领域的热点问题。作为人工智能领域的深度强化学习由于不需要人工标记和不需要依赖先验知识的优势,目前多个领域已经结合实际应用对其进行了研究开发,同样在机器人路径规划任务中也有该方向的研究。本文使用单目相机作为机器人的感知手段,研究基于深度强化学习的室内自主避障问题。首先,在编码器-解码器网络结构的基础上,采用监督训练的方式,提
随着机械制造技术的飞速发展,高速电主轴成为了当今数控机床的核心部件,对其性能的要求也越来越高。电主轴是否具有优良的动态特性成为了确保机床加工精度高低的必要条件。轴承受预紧力的作用影响其接触刚度,高速时转速的变化导致轴承摩擦热的产生影响了接触变形进一步影响接触刚度。轴承作为电主轴的支撑部件其刚度又决定着电主轴的动态特性。本文以赫兹接触理论、摩擦理论、传热学、转子动力学理论为基础,分析多工况条件下的电
随着互联网的快速发展,网上产生了大量的产品评论,这些产品评论中往往蕴涵着许多有价值的信息,通过分析在线产品评论的情感倾向可以为用户和商家的决策提供支持。目前,互联网文本评论的情感分析已经成为文本挖掘的热门领域,基于神经网络的情感分析方法虽然克服了机器学习方法存在的特征提取困难的问题,但是神经网络仍然存在无法感知不同单词的重要程度、无法学习句子的内部结构和无法利用单词的位置信息等问题。同时,产品评论