论文部分内容阅读
分布式冷热电联供系统以其高的能源利用率和环保优势成为我国节能减排的首选技术之一,但现有的冷热电联供系统存在变工况运行性能差、中低品位变温余热无法高效回收利用等难题,导致系统热力性能与经济性恶化。因此,研究系统全工况性能调控方法和动力余热驱动除湿循环对提高分布式冷热电联供系统能源利用效率意义重大。本文根据各单元设备的全工况模型,组合成具有特定功能的冷热电联供系统模型,提出改善系统变工况性能的调控方法,对分布式冷热电联供系统性能影响因素进行了定量化的理论分析,建立了冷热电联供系统优化模型。研究了与各种冷热电负荷需求相适应运行模式,采用一次能源利用率和相对节能率作为评价准则,分析了冷电比、发电效率和功率等因素对系统性能的影响,采用蓄能、电压缩式制冷或补燃对系统性能进行调控。结果表明,冷电比是影响系统性能的主要因素,对于“以电定冷”模式,随着冷电比增加,系统一次能源利用率增大,相对节能率先增大后减少,存在着最佳冷电比;对于“以冷定电”模式,随着冷电比增加,系统一次能源利用率和相对节能率先增大后减少,达到最佳冷电比时,系统处于最优运行状态点。本文对内燃机冷热电联供系统性能进行了深入的理论与实验研究,在单元设备和用户冷热电负荷动态特性基础上,分析了变工况条件下系统性能下降的原因,内燃机输出功率改变,制冷机组性能改变,导致整个系统性能发生变化,当内燃机输出功率为40kW,系统性能最佳,验证了冷热电联供系统全工况优化模型的准确性。研究了内燃机冷热电联供系统各单元设备中可用能的利用状况,采用“黑箱”模型对系统进行分析,柴油机发电过程损失最大,换热器的损失最小,且随着内燃机输出功率的增加,各设备过程的损失增加。针对高温高湿地区的气候特点,研究了动力余热驱动的氯化锂溶液吸收式除湿过程及其对地域性分布式冷热电联供系统性能的影响,探悉了冷热电联供系统正逆耦合循环和吸收式除湿逆循环间耦合机理,分析了冷热电联供系统和余热负荷驱动吸收式逆循环的能量输入或输出的比例调控和变工况能量特性。实验研究了利用内燃机缸套水为再生热源液体吸收式除湿特性及其对冷热电联供系统性能的影响,分析了缸套水热负荷以及LiCl溶液吸收式除湿机组变工况特性,探寻了提高冷热电联供系统热力性能的方法。结果表明,带除湿的冷热电联供系统的一次能源利用率相对于常规冷热电联供系统提高了15%左右,相对节能率提高了20%左右。采用全工况性能调控方法和低品位余热驱动吸收式除湿技术,设计了1200kW级工业园区冷热电联供系统,提出了多种正逆循环、多个热力系统耦合集成方案,综合考虑热力性能和经济性能,采用优先考虑系统全工况性能,兼顾用户侧冷热电需求的主动蓄能新思路,带蓄能的冷热电联供系统集成方案优势明显,其一次能源利用率达81.7%,节能率达34.7%,作为工业园区推荐方案。根据冷热电联供系统实际运行测试数据,分析了冷热电联供系统热力性能,系统的一次能源利用率达到77.6%,相对节能率达到25.3%。验证了系统集成与全工况性能调控理论和方法的正确性,为分布式冷热电联供系统集成方案提供理论与实验依据。