【摘 要】
:
负泊松比蜂窝材料具有特殊的力学性能:较高的相对刚度、强度和高效的能量吸收能力,使得它在抗剪切、抗屈曲、提高硬度以及抗疲劳等方面有独特的优越性。在汽车、飞机、医疗器材以及军用设备中有广阔的前景。值得注意的是,负泊松比蜂窝材料往往具有缺陷和不均匀性,而且实际工况中,易受到多轴作用。因此对于负泊松比蜂窝材料的多轴以及材料不均匀性力学性能的研究至关重要。本文在内凹负泊松比蜂窝的基础上,通过坐标扰动建立了具
论文部分内容阅读
负泊松比蜂窝材料具有特殊的力学性能:较高的相对刚度、强度和高效的能量吸收能力,使得它在抗剪切、抗屈曲、提高硬度以及抗疲劳等方面有独特的优越性。在汽车、飞机、医疗器材以及军用设备中有广阔的前景。值得注意的是,负泊松比蜂窝材料往往具有缺陷和不均匀性,而且实际工况中,易受到多轴作用。因此对于负泊松比蜂窝材料的多轴以及材料不均匀性力学性能的研究至关重要。本文在内凹负泊松比蜂窝的基础上,通过坐标扰动建立了具有一定不规则度的内凹负泊松比蜂窝结构。利用ABAQUS有限元分析软件,对规则内凹蜂窝以及引入不规则度的内凹蜂窝通过准静态压缩、面内动态力学行为以及密度梯度蜂窝的面内动态力学行为进行有限元模拟分析,具体研究内容如下:(1)先对规则模型进行X、Y两个方向上的单轴准静态压缩,得到所研究结构的弹性模量和泊松比,将有限元模拟结果与理论计算结果比较分析,验证了本文有限元模型以及数据处理方法的有效性与正确性。对扰动之后的模型进行同样两个方向的单轴准静态压缩,分析相对密度、不规则度以及各向异性对结构单轴准静态压缩性能的影响,同时也研究了不同扰动程度对蜂窝弹性模量、泊松比等力学性能影响规律。(2)对规则的内凹六边形蜂窝以及具有不同规则度的扰动蜂窝,在不同冲击速度下,从结构的变形模式、动态响应曲线以及能量吸收能力等方面,进行面内X、Y方向的单轴冲击以及XY复合加载下的等双轴冲击下的有限元模拟分析。分析结构不同应变时刻的变形趋势,单轴以及双轴冲击下比较了X、Y两个方向的平台应力。也分析了不规则度的引入,对内凹负泊松比蜂窝结构的面内单双轴动态冲击性能的影响。(3)研究了具有不同不规则度的内凹负泊松比蜂窝结构的两种密度梯度结构,单轴冲击下,研究了自上而下的正梯度蜂窝结构,双轴冲击下研究了由外到内、由内到外的“回”字型正负密度梯度蜂窝结构。在不同冲击速度下,从变形模式、动态响应以及能量吸收方面,研究了它们的面内动态力学性能。也分析了不规则度的引入,对于密度梯度蜂窝结构力学性能的影响。
其他文献
本文研究了粘性Cahn-Hilliard方程和Cahn-Hilliard-Hele-Shaw方程组系统的有限元算法.一方面,研究了具有对数势函数的粘性Cahn-Hilliard方程的混合有限元算法,提出了时间上二阶BDF数值格式.另一方面,研究了具有双阱势的Cahn-HilliardHele-Shaw系统的有限元算法,引入拉格朗日乘子,给出了时间上二阶的数值格式.具体研究内容如下:第一部分,介绍了
19世纪以来,非线性发展方程被广泛应用于物理学,力学,等离子物理,凝聚物理,大气物理,流体力学等各个领域.方程精确解的研究有助于准确理解事物发展的内在本质.由于方程的复杂性,迄今为止仍未找到一致的方法来求解非线性发展方程.随着计算机技术的发展,非线性偏微分方程及非线性科学研究被注入了全新活力,符号计算成为研究非线性发展方程的主要手段之一.本文以统一方法,广义统一方法为基础,结合改进的F-展开方法,
本文研究了Cahn-Hilliard方程和Allen-Cahn方程的有限元数值算法.一方面,研究了具有浓度迁移率和对数势能的粘性Cahn-Hilliard方程的混合有限元数值算法,并针对数值求解Cahn-Hilliard方程时非线性项引起的耗时问题,研究了具有对数势能的Cahn-Hilliard方程的两重网格混合有限元算法.另一方面,研究了具有对数势能的Allen-Cahn方程的两重网格有限元算法
分数阶导数具有的记忆性、非局部性等特点,使得分数阶微分方程模型能简单准确地描述自然界中的复杂系统和行为.分数阶微分方程广泛应用于生物医学工程、系统控制等领域.这些领域中的诸多问题可抽象为具有混合单调非线性项的分数阶微分方程边值问题.本文利用非线性泛函分析基本理论,特别是非线性算子不动点理论,在无需算子的上下解存在或具有紧性、连续性的条件下,得到了两类混合单调算子不动点的存在性相关结论.并且,应用混
相场或扩散界面模型作为研究界面现象的主要工具之一,已经成功地应用于模拟许多领域的动力学过程.本文研究的是两相不可压缩流的Cahn-Hilliard-Navier-Stokes(CH-NS)相场模型,建立有效的数值格式来求解耦合相场模型是一个巨大的挑战,设计数值格式的一个重要目标是在离散的层次上保持能量耗散定律.目前对于CH-NS相场模型来说,近些年来研究结果颇多,为了设计简单,高效,能量稳定,满足
本文将部分可观察一般离散事件系统推广为部分可观察模糊离散事件系统,讨论了部分可观察模糊离散事件系统的状态反馈控制.首先,我们在部分可观察模糊离散事件系统中引入输出映射以及输出符号集得到部分可观察模糊离散事件系统的模型.给出了部分可观察模糊离散事件系统中模糊控制器合理性的定义以及模糊状态允许反馈控制器的定义,并在此基础上得到部分可观察模糊离散事件系统的最优模糊状态允许反馈控制以及最优模糊h-状态允许
高熵合金以优异的强韧性、耐磨性、耐腐蚀性、抗辐射性等性能成为目前研究最为广泛的金属材料,在未来的工业应用中也将占有重要地位,其独特的合金设计理念使其具有晶格畸变严重、晶体缺陷扩散缓慢、化学短程有序等独特的结构特征。这些特征从材料学角度为解释合金优异性能提供了思路,但新的微观机制出现势必会导致传统材料模型和数值计算方法难以应用于高熵合金的工程模拟,亟需针对高熵合金服役工况(高应变率,高、低温加载,剪
随着射流研究的不断深入,自激励射流振荡器在流体机械、航空等领域内的应用潜力逐渐被发掘,其在摩擦减阻、空气降噪和微气泡生成等方面拥有技术优势。由于自激励射流振荡器内外流场的高复杂性,采用实验方法不易准确测量关键数据,特别是对于不同结构射流振荡器在不同工况下的流动分析,尚未形成系统的研究体系,而通过数值模拟方法可以对实验进行合理预测。本文使用Fluent前处理软件构建几何模型并使用Fluent mes
给定两个简单图T和H.Turan数ex(n,H)定义为不包含H作为子图的n个顶点的图中边数的最大值.广义Turan数ex(n,T,H)定义为不包含H作为子图的n个顶点的图中T子图的最大个数.当T=K2时,广义Turan数ex(n,T,H)即为Turan数ex(n,H).如果G的每个子图中都包含一个度至多为k的顶点,则称G为k-退化图.令N(G,F)表示G中F子图的个数.图G的线性森林是指由图G中顶
为了解奶牛乳房炎大肠埃希氏菌耐药性、毒力基因携带及分布情况,从2019年9月至2020年6月在新疆乌鲁木齐、伊犁、昌吉地区的7个奶牛场共采集了142份乳房炎奶牛牛乳样本,采用麦康凯培养基和伊红美蓝培养基进行筛选,利用生化试验和16S rDNA PCR方法鉴定出大肠埃希氏菌,用K-B纸片扩散法对分离株进行耐药性检测,PCR法检测其9种毒力基因,小鼠攻毒试验检测其致病性。结果显示,从142份样本中共分