【摘 要】
:
环行器作为一种信号单向传输的无源器件,广泛应用于各种雷达系统中。传统环行器需外置磁钢提供偏置磁场,不利于雷达系统小型轻量化的发展。M型六角铁氧体具有高的矫顽力、高的剩磁比和高的各向异性,可为环行器工作提供自偏置场,完全摆脱外置磁钢束缚。但针对远距离探测雷达、城市气象预警等X波段应用领域,高各向异性特征的M型六角铁氧体已无法满足器件的频率需求。开展M型六角铁氧体材料制备及在X波段自偏置环行器中的应用
论文部分内容阅读
环行器作为一种信号单向传输的无源器件,广泛应用于各种雷达系统中。传统环行器需外置磁钢提供偏置磁场,不利于雷达系统小型轻量化的发展。M型六角铁氧体具有高的矫顽力、高的剩磁比和高的各向异性,可为环行器工作提供自偏置场,完全摆脱外置磁钢束缚。但针对远距离探测雷达、城市气象预警等X波段应用领域,高各向异性特征的M型六角铁氧体已无法满足器件的频率需求。开展M型六角铁氧体材料制备及在X波段自偏置环行器中的应用研究显得极为迫切。首先,采用固相烧结法制备M型六角铁氧体,探究了主配方及添加剂对M型六角铁氧体性能的影响。研究结果表明:适量Cu2+取代可促进BaM铁氧体的烧结致密化,随着Cu取代量的增加,材料的Mr/Ms先减小后增大,Hc和Ha则逐渐减小;同时适量缺铁有助于增强BaM铁氧体的烧结活性,提高Mr/Ms,降低ΔH;通过EPMA分析得出在主配方和添加剂中分别引入Cu O,可在晶粒内和晶界间形成Cu2+浓度梯度,阻碍畴壁位移,提高Hc;Cu O添加剂可促进液相烧结,随着Cu O掺杂量的增加,Mr/Ms和Ha基本不变,Hc和ΔH逐渐减小;适量CaCO3添加剂可显著提高BaM铁氧体的致密性和Mr/Ms,材料的Hc和ΔH均随着CaCO3掺杂量的增加而逐渐减小。其次,基于上述优化的主配方及添加剂,探究了关键制备技术对M型六角铁氧体性能的影响。研究结果表明:适宜的预烧温度可促进晶粒致密化和均匀性生长,提高材料的Mr/Ms和Hc;相较行星式球磨机,采用滚筒式球磨机和卧式高能球磨机球磨效率更高,二磨粉料均匀性更好;材料的Hc随行星式球磨时间的增加逐渐增大,随滚筒式球磨时间的增加先增大后减小,随卧式高能球磨时间的增加逐渐减小;适宜烧结温度可提高材料的Mr/Ms,降低ΔH,但Hc随着烧结温度的增加而逐渐减小;当预烧温度为1000℃,采用滚筒式球磨,球磨时间为20 h,烧结温度为920℃时,材料的综合性能较好,分别为:Hc为841 Oe,Mr/Ms为0.84,4πMs为3.55 k Gs,Ha为13.58 k Oe,ΔH为315 Oe。最后,基于自主研制的M型六角铁氧体材料,对X波段自偏置环行器的结构进行优化设计仿真。优化后X波段自偏置环行器结构参数为:h=0.26 mm、R=1.63mm、w1=0.96 mm、l1=1.98 mm、w2=0.19 mm、l2=1.59 mm、w3=0.46 mm、l3=2.00mm、wy=0.2 mm、ly=2.16 mm。此时X波段自偏置环行器在8.95~9.15 GHz内回波损耗和隔离度均大于15 dB,插入损耗低于1.88 dB。
其他文献
随着电力电子产业的不断发展,现代功率电子设备被扩展到了更高压更高频更高效的工业应用中。而宽禁带半导体材料的特性使SiC MOSFET在高压、高频、高温、高效、高功耗的电动和混合动力汽车以及太阳能逆变器等应用领域中脱颖而出。由于SiC MOSFET在栅极电荷、导通电阻、I-V曲线特性等方面与Si MOSFET不同,所以专用的SiC MOSFET驱动芯片的研发设计是必需的。根据SiC MOSFET的器
研究目的:雪车是冬奥会的正式比赛项目之一,也是我国备战2022年北京冬奥会的重点项目。作为一支于2016年正式组建的队伍,中国国家雪车队跨项选材工作的开展较为成功。但较世界强队,中国仍存在十年以上的发展差距。雪车项目的竞技过程可分为2个阶段:起跑推车阶段和滑行阶段。推车启动速度是决定最终成绩的关键,也是国家队训练的重中之重。研究并解决推车阶段存在的问题对于提高竞技成绩、为2022年冬奥会打好基础具
在后疫情时代,居家办公久坐群体的健康问题持续加重,通过对久坐人群健康状况的调研,结合行为干预理论,秉持自然设计理念,基于用户行为习惯,结合人体工学数据,设计一款附加轻量健身功能的多用居家办公椅。将行为干预与智能监测云平台相结合,同时满足学习办公与居家健身需求,实现智能交互式健身,提升座椅价值,为久坐群体提供一种健康的居家办公选择。
脊椎动物的胚胎在发育过程中会形成三个具有不同发育命运的胚层。胚层的分化涉及诸多调控因子和信号通路的精密调节。Nodal信号和FGF信号对于中内胚层的诱导和背腹体轴的建立具有十分重要的调控作用。这两条信号通路也相互作用,相互调节以确保胚胎在发育过程中具有合适的信号强度。本课题主要研究了araf基因对斑马鱼胚胎早期胚层分化的调控作用,以及在这一过程中araf基因通过其不同异构体调节Nodal和FGF信
随着三维成像技术在激光制导、目标探测、自动驾驶等军事领域和商用领域的市场需求越来越大,激光三维成像技术越来越被重视,本论文开展了对激光三维成像数字控制电路的研究:首先对读出电路的数字控制电路的总体框架结构进行了研究。分析了激光三维成像的工作原理,列举了获取距离信息和强度信息的方法,提出了激光三维成像焦平面控制电路的设计指标,通过对关键指标分析,确定了获取距离信息和强度信息的方法,并通过计算确定了激
随着轨道交通、电动汽车、脉冲功率和超高压直流输电等技术的不断进步,电力电子系统对大功率半导体开关器件的需求十分紧迫。依托于第三代宽禁带半导体材料的发展,碳化硅门极可关断晶闸管(SiC GTO)突破了硅基晶闸管在阻断电压、开关速度、工作温度和功率密度等多方面导致的严重系统局限性,能在双向载流子注入和电导调制效应的作用下同时拥有高阻断电压和大导通电流,并在高温条件下以极高的di/dt数千次可靠运行。因
由于集成电路的特征尺寸正在逼近硅材料的物理极限,摩尔定律不再适用,而与此同时信息产业却对高速高性能芯片的要求越来越高。因此,寻找能够替代硅材料的半导体材料和其他材料成为该领域的热门方向。如新型的半导体材料,氮化镓、砷化镓和碳化硅等,因具有独特的优势,近年来发展迅猛。除此以外,以超导材料构成的超导计算机也成为一种新兴的趋势。超导计算机,是指用超导电子电路构成的计算机。由于超导材料具有零电阻、完全抗磁
Fe基纳米晶合金具有优异的软磁性能,有在GHz频段应用的潜力。而随着电子系统和电信设备的快速发展,不仅要满足电子器件的高频工作要求,还要解决高频应用所带来的电磁污染问题。基于此,对Fe基纳米晶合金的性能提出了更高的要求:高磁导率和高截止频率。为了打破Snoek极限的限制,可通过调控形状各向异性,利用片状化的颗粒来提高截止频率和磁导率。而由此引起的介电常数远大于磁导率产生的阻抗失配将会阻碍其应用。因
在过去十几年中,由于强大的物理背景,非线性薛定谔系统吸引了一大批学者的关注。其中,波色-爱因斯坦凝聚态(BEC)问题尤为突出。在科学研究中,数学和物理学家们对驻波解特别感兴趣。大量优秀的成果也接连出现。其中,有很多与数学相关的问题,具有挑战性和重要的学术价值。本文旨在利用变分法和椭圆方程的理论,研究与BEC相关的方程组,包括最小能量估计和基态解的存在性问题,也包括无穷多解、变号解的存在性,以及解的
量子点材料(quantum dots:QDs)是一种纳米级别的低维半导体材料,可以在低温溶液中制备和处理。其具有成本低廉、尺寸可调、宽光谱响应以及良好的光稳定性等优势,被人们普遍应用在发光二极管、太阳能电池、光电探测器等光电领域。与此同时,纳米量子点还可以通过喷涂、旋涂等方式于硅基材料直接集成在一起,极大简化了光电器件的制备流程,在这个硅技术占据半导体主导地位的时代,量子点被认为是下一代新型半导体