动态内存感知的Spark任务调度策略研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:liongliong514
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在当今大数据时代,大规模数据处理主要是基于分布式的并行处理计算,调度在提高大数据并行处理框架的性能方面起着重要作用。Spark作为大数据处理领域最新技术进展,其是一个基于内存计算的并行计算框架,使用多线程任务调度模型。在Spark任务调度过程中不会考虑内存资源,而是由用户设置参数确定任务执行进程中并发执行的任务线程数量。这对任务线程乃至整个应用程序的执行性能造成了潜在限制。为了克服现有的Spark任务调度中存在的这种限制,本文提出一种动态内存感知的Spark任务调度策略(Dynamic Memory-Aware Task Scheduling,DMATS),在符合Spark原有的任务数据本地化调度原则基础上,考虑内存计算资源,并且通过静态和动态的方式,调整任务并发度,使得任务的并发执行总是最适应于任务执行器的计算资源。具体来说,本文主要贡献包括:
  1)本文提出了一种任务数据统计方法来计算任务需要处理的数据量以确定每个任务的资源需求。这种方法通过分析基于RDD的Spark执行引擎,查找现有相关信息经由一定的计算处理获得任务处理数据量的值,在较少额外计算开销和通信延迟下,可以得到实际任务处理数据量的结果数值。
  2)本文提出了一种计算执行器中初始任务调度并发度的自适应算法,用以确定初始阶段时,在执行器上可以调度的线程任务的初始数量。该算法在保证现有的调度机制性能不受损害的基础上,考虑了任务资源需求以及执行器可用执行内存资源,给出了自适应执行器内存资源的初始任务调度并发度。
  3)本文提出了一种任务调度并发度动态调整算法,该算法可以根据先前完成的任务的内存使用情况反馈来动态调整并发度。在这种动态反馈调整变化中,极大地满足了在任务运行时对内存资源的使用需求,不仅可以提升资源利用率,而且可以提高Spark平台整体运行性能。
  4)总结上述提出的研究成果,基于Spark的开源平台,实现了基于动态内存感知的Spark任务调度策略系统平台。该系统平台对上述提出的任务数据统计方法以及初始静态和后序动态任务调度并行度调整算法进行了实际应用。采用了性能测试工具HiBench,选取典型的两种类型的负载对该任务调度策略进行性能与资源使用测试实验。结果分析表明,与原生Spark的调度策略相比,其应用执行时间最大缩短了43.64%,平均缩短了27.8%,CPU与内存资源利用率也有明显的提升,平均提升了5.7%和12.3%,并且与其它基于Spark改进的任务调度策略工作相比其提升效果平均高了将近10.6%。
其他文献
[摘 要]目前,以xM00C为主的高等教育慕课数量不断增长、应用规模不断扩大。文章针对慕课教学设计中存在的教学阶段划分与衔接不够明确、课程资源缺乏系统梳理、学习情境相对单一等问题,提出基于首要教学原理进行慕课教学单元、教学阶段和学习情境的设计,并以学银在线供应链管理课程为例进行了具体说明。   [关键词]慕课;教学设计;首要教学原理;供应链管理   [中图分类号]G434 [文献标识码]A
期刊
随着网络和移动设备的发展,越来越多的应用技术需要更高的网络带宽和稳定的服务质量。多宿主技术使移动设备能够配备多个网络接口,设备可以同时连接多个不同网络。设备使用多路径传输控制协议(Multi-Path TCP,MPTCP)可以聚合LTE网络和WLAN网络,充分使用移动设备的多个网络,提高数据传输率,保证数据传输的鲁棒性。
  但是在基于端到端网络模型中,客户端和服务器之间的无线链路网络状态通常不可预测。许多原因导致网络条件不稳定,主要表现为包丢失、带宽抖动和高延迟变化等,最终导致在多路径传输中数据包
随着互联网的发展,网络上产生了大量的文本数据,而如何快速地对这些文本进行分类是一个亟待解决的问题。传统的机器学习算法在文本特征提取上能力有限。近年来,随着深度学习算法的快速发展,文本语义信息的提取更加精确、完善,从而为文本分类性能的提升奠定了坚实的基础。目前,处理多标签文本分类比较常用的是SequencetoSequence模型,即利用编码器抽取文本特征,再利用解码器顺序输出文本的多个类别。与其它深度神经网络模型相比,Seq2Seq模型自带的注意力机制能够很好地突出文本中的关键信息,从而提升了模型的分类效
目标检测是计算机视觉领域最经典的任务之一,近年来基于深度神经网络的目标检测算法的研究取得了显著的突破。然而,深度学习目标检测算法需要对大量有标注数据的训练以获得更高的性能,而实际应用中有标注资源往往是稀缺的,大量的无标注数据需要人工对其进行标注。然而,人工标注通常是一个非常耗时、困难且成本高的过程。主动学习通过衡量和评估未标注样本所含有的信息量,挑选信息量最丰富即对模型训练最有利的样本进行人工标注,以实现仅对少量样本标注训练即可达到较高的模型性能,从而大幅提升人工标注效率,减少人工成本。本文的研究将针对在
随着互联网的快速发展,人们在网上活动越来越多,产生的数据量也在飞速地增长。海量的数据带来了严重的数据存储和处理问题。为了解决海量数据的计算和存储问题,云计算和云存储应运而生。为了获得巨大的存储空间和高性能的计算,越来越多企业和个人将自己的数据被外包到云端管理系统中。可是数据外包提供低成本存储和高效率计算的同时也带来了隐私泄露的问题。大量的数据暴露在云服务器端。恶意的管理者可以轻易地窥探数据所有者的隐私,从而损害数据所有者的利益。如果将数据完全加密再存储到云服务器,虽然可以避免隐私的泄露,但云服务器无法直接
随着智能辅助驾驶及自动驾驶系统的发展,复杂道路场景下基于视觉的车道线检测已成为热点研究课题。现有的车道线检测算法分为两大类,一类是基于传统图像处理的算法,另一类是基于深度神经网络的算法。第二类算法的准确性比第一类算法更高,但是也存在两个问题。(1)在复杂道路场景下,准确性会下降,主要原因是:深度神经网络的实际感受野远小于理论感受野;神经网络在推断时容易被无关的信息干扰。(2)深度神经网络算法在运行
随着互联网技术和产业的不断发展,如何保障网络接入设备的安全已经成为一个重要的议题。入侵检测系统可以很好地区分网络连接中的正常和异常行为,是保障网络安全的一个重要手段。然而现在的网络入侵方式往往使用多种机制来伪装攻击并逃避检测,这对入侵检测系统提出了新的挑战。虽然有许多来自机器学习和模式识别领域的监督和无监督学习算法已经被用于提高入侵检测系统的效率,但是它们还是存在一些问题。无监督学习的算法不需要大
图像补全是计算机视觉中的一个重要研究方向,具有广阔的应用前景。深度学习图像补全方法一般有基于自编码器、生成对抗网络和循环网络这三种基础技术的方法,然而大部分方法的输出结果都非常单一,对每一张缺损图像输入都只能生成一个补全结果。由于每一张缺损图像的可能结果所对应的概率空间非常大,为了获得补全结果的多样性,本文提出一种基于标签差异化的图像补全方法,称为LD-PICNet(Label Different
近几年,随着人工智能与多媒体技术的飞速发展,人们的工作、生活以及娱乐在智能终端呈现出丰富的多模态样式,导致多模态数据呈爆炸式地增长,这些数据主要包括文本、图像、音频等。由此,跨模态检索的研究逐渐成为多媒体领域的一大热点。并且由于不同模态数据之间表示的形态不同,计算机难以理解不同模态数据分别表示的对应的含义是否相同,使得跨模态检索也成为多媒体领域研究的难点之一。
  菜谱中不同模态数据相互检索是人们生活中普遍的应用。本文主要研究的是针对图像和文本的跨模态菜谱检索,它是指从将菜谱中的文本作为查询,从图像
机器阅读理解是使机器阅读并理解给定文章和相关的问题,预测相关问题的答案。机器阅读理解是自然语言处理领域最重要的任务之一,被认为是人工智能发展过程中最具挑战性的方向之一。随着众多大规模高质量数据集的推出和各种深度神经网络的使用,机器阅读理解得到快速发展,进步显著,答案预测准确率远超人类。
  近年来,预训练语言模型被创造性的提出。由于预训练语言模型的优秀表现,现有的绝大部分机器阅读理解模型,在编码阶段使用预训练语言模型编码给定的文章和文章相关的问题,在信息融合阶段使用多种注意力机制将文章信息跟其相关的