论文部分内容阅读
燃煤烟气中SO2的排放不仅污染空气、危害健康,而且能够形成严重的酸雨,同时是对我们这样一个硫资源相对短缺国家的极大浪费。加快烟气脱硫和回收技术的研发已成为生存环境可持续发展的迫切需要。干法烟气脱硫工艺既可以脱除SO2,又能实现硫资源的回收,使其具有良好的应用前景。本文提出将干法烟气脱硫工艺结合喷动床技术来脱除烟气中的SO2,采用层燃锅炉烟气中分离出来的半焦颗粒作为干法脱硫的吸附剂,从而达到以废治废的目的。本文针对喷动床内半焦烟气脱硫技术问题,通过冷、热态实验手段,考察了半焦颗粒在喷动床内的流体力学特性和脱硫性能。建立了半焦脱硫动力学模型,结合气固两相双流体模型模拟了喷动床内半焦颗粒的脱硫过程,为实现喷动床半焦颗粒烟气脱硫技术的开发与工业化应用提供支持。通过等温氮吸附/脱附法和HK法解析得到半焦颗粒的微孔比表面积、孔容和微孔孔径分布曲线;采用电子显微镜对半焦颗粒孔隙结构进行观察,得出其微孔结构多为开孔狭缝型。采用Lennard-Jones势能函数得到了SO2、O2、H2O和SO3分子与半焦微孔壁面相互作用的吸附势曲线,并得出相应的最小吸附势能,通过比较说明半焦颗粒对SO2分子的吸附能力较强,其对SO2分子的吸附势能相当于吸附特性较好的活性炭颗粒的75%。所以可应用半焦替代活性炭进行脱硫。喷动床内半焦流动特性实验与数值模拟方法均得到:喷动床内半焦颗粒可以形成稳定的喷射区、环隙区和喷泉区的三区流动结构。随着表观气速的增大,喷动床的喷泉高度逐渐升高,喷射直径逐渐扩大,壁面处颗粒速度逐渐增加。采用环-核流动模型,结合实验得到的喷动床的喷射直径和环隙区颗粒平均流速等参数,得到了喷动床环隙区平均空隙率的分布规律:环隙区空隙率随表观气速的提高而增大,随着床层高度的增加而降低。数值模拟结果与实验结果吻合良好,为模拟热态情况下喷动床内半焦烟气脱硫打下基础。通过实验得到床层压降随表观气速的变化的情况,得到了喷动床不同床高下的最小喷动速度和最大床层压降,并将实验结果与经验模型进行比较,得出喷动床静床高在250到350mm范围内,Mathur和Gishler等人得到的经验模型与实验吻合较好;通过对不同工况下喷动床内半焦损失率的测量表明:在相同的表观速度下,堆积床高越高,其颗粒损失速率越大。通过热态脱硫实验研究得出:喷动床比固定床具有较好的传热性能。另外,喷动床的脱硫效率要比固定床大约高10%,说明喷动床内特有的喷射区、环隙区和喷泉区的三区流动结构有利于半焦对烟气中SO2的脱除。通过对不同表观速度下喷动床脱硫效率的测量,得到脱硫效率随着表观速度的增加呈现峰型分布,说明喷动床内半焦颗粒的脱硫过程受到对流传质和停留时间两个因素的限制。通过实验得到喷动床的最优脱硫表观速度为:U mx=1.231.45Ums;通过对不同堆积床高下喷动床脱硫效率的测量得到:喷动床堆积高度增加55mm,其脱硫效率大约提高8%10%。基于气固两相流体动力学,应用双流体模型来模拟喷动床内气固的相互作用。基于L-H动力学理论,建立了半焦脱硫的非均相催化反应速率模型,并求解了脱硫反应的动力学参数。根据得到的脱硫动力学模型,应用“UDF”对Fluent计算软件进行了二次开发,实现了床内气固流动与化学反应的耦合。通过模拟计算,得到床内速度矢量、气量分布、颗粒速度和颗粒拟温度的分布情况,并对喷动床内半焦颗粒脱硫过程进行有效预测,计算结果与实验结果吻合良好。在优化模拟中得出:喷动床的脱硫效率随着反应温度的提高而降低,随着烟气中含氧量和蒸汽量的增加而提高,烟气中蒸汽含量对脱硫速率的影响更加显著。研究表明,本文所建立的基于欧拉多相流模型的喷动床内半焦颗粒烟气脱硫数理模型及数值模拟方法,符合实际对象的特性,有助于揭示喷动床内复杂的稠密气固流动和化学反应规律,为喷动床脱硫反应器的结构设计、优化和运行提供有益的参考。