【摘 要】
:
随着应用数学的不断发展,有越来越多的数学学者利用偏微分方程的理论知识科学地解释许多自然、生态、物理等问题,并且取得了许多具有实际意义的研究成果.本文借鉴前人的一些方法和优秀成果,研究了一类带有非单调反应函数的捕食-食饵模型.本文首先讨论了模型在Dirichlet边界条件下正平衡解的存在性、半平凡解处分歧解的结构、分歧解的稳定性等,然后讨论模型在Neumann边界条件下正解的持久性、半平凡解的全局渐
论文部分内容阅读
随着应用数学的不断发展,有越来越多的数学学者利用偏微分方程的理论知识科学地解释许多自然、生态、物理等问题,并且取得了许多具有实际意义的研究成果.本文借鉴前人的一些方法和优秀成果,研究了一类带有非单调反应函数的捕食-食饵模型.本文首先讨论了模型在Dirichlet边界条件下正平衡解的存在性、半平凡解处分歧解的结构、分歧解的稳定性等,然后讨论模型在Neumann边界条件下正解的持久性、半平凡解的全局渐近稳定性、正常数解的全局渐近稳定性等.本文的结构及主要内容如下:第一章主要叙述了捕食-食饵模型的研究背景和目前的研究进展情况,并给出了一些相关的优秀成果.第二章研究了在Dirichlet边界条件下,带非单调反应函数的下述捕食-食饵模型:首先,利用抛物型方程和椭圆方程的知识对正解作出先验估计,再利用Leray-Schauder度理论等知识,结合算子谱分析得出非常数正解存在的充分条件;其次,利用分歧理论讨论了在半平凡解处分歧解的结构;然后,利用特征值的线性扰动理论讨论分歧解的稳定性;最后,研究了平凡解和半平凡解的局部渐近稳定性.第三章研究了在Neumann边界条件下,带非单调反应函数的下述捕食-食饵模型:本章内容主要研究平衡解的长时行为.首先将模型等价为常微模型,再结合比较原理对非负解作出估计;然后,讨论了模型的正解具有持久性的充分条件,并且分情况讨论了模型半平凡解的全局渐近稳定性;最后,讨论了正常数解的全局渐近稳定性、局部渐近稳定性.
其他文献
随着科学技术与工程计算的迅速发展,数值计算已成为推动理论和科学发展的重要方法.众所周知,数值代数中的诸多问题都可归结为求解线性方程组数值解的问题.求解线性方程组Ax=b有直接法和迭代法两类方法.直接法作为最原始的方法一般用于阶数较低的线性方程组,如果不计舍入误差,通过有限步操作可得到精确解x.然而,随着计算机的飞速发展,所需求解问题的规模不断扩大,迭代法因其程序设计简单,所需存储量少的特点取代直接
小波分析是近年来发展起来的一门新兴数学分支,它是Fourier分析划时代的发展产物,Daubechies证明了除了Haar小波外不存在紧支撑正交对称的单小波,1994年,Goodman等提出了多小波的概念,多小波将实际中应用非常重要的光滑性、紧支撑性、对称性、正交性完美的结合,因此多小波在实际应用中非常广泛.2006年,杨守志等提出了双向两尺度加细方程,双向小波是一种新的小波,构造双向小波的一般方
在自然界中,单种群是组成整个种群系统的基本单元,因此对单种群模型解的各种性态的研究,为讨论复杂模型的动态行为奠定了基础.本文讨论了两类具有分段常数变量和时滞单种群生态模型正平衡态的局部渐近稳定性、Neimark-Sacker分支和Flip分支等问题.通过对此类生态模型动力学行为的研究,从而使人们可以认识自然界种群的发展规律,对更合理、科学的利用自然资源以及保护生态环境具有一定的理论指导意义.种群数
众所周知,物种竞争是自然界中普遍存在的规律.竞争会产生共存,也会导致优胜劣汰,使物种向更高阶进化.所以研究物种竞争对整个生态学都是非常有意义的.产生种内竞争和种间竞争的原因有很多,而物种生存环境的变化是引起竞争的一个非常重要的因素.环境的变化影响着物种的生存和发展,其中自然界中的季节交替引起的环境变动不仅影响着物种的成长,还影响着物种的组成.经典Lotka-Volterra竞争系统[3]为:其中r
数学、物理、流体力学、工程技术等学科中的许多问题最终都归结为求解一个或一些大型稀疏矩阵的线性代数方程组.众所周知,在求解线性方程组Ax=b时,一般有两种方法,即直接法和迭代法.线性方程组的直接法,用于阶数不太高的线性方程组效果较好,如果没有舍入误差,通过有限步操作,可以产生精确的解x.而迭代法由于程序设计简单可以减少存储量因而被广泛的应用于方程组的求解,特别是在大型稀疏线性方程组的求解中显出更强的
众所周知,Sturm-Liouville问题起源于对固体热传导模型的处理.其理论应用广泛,主要包括数学物理、工程技术、气象物理及其它理论和应用学科.因此,一个多世纪以来,常微分算子已逐步形成数学及物理学领域的一个重要研究分支.本文通过微分方程基本解的高阶展开式,研究边界条件中含谱参数的Sturm-Liouville算子特征值的渐近展开式.进一步利用初值问题解的渐近估计,并借助于一个积分恒等式,采用
本文主要研究了离散正奇异系统的可容许性和离散正奇异切换系统的稳定性.本文在第一章中给出了问题的背景,意义及研究现状.在第二章中研究了离散时间正奇异系统的可容许性.首先根据离散时间正奇异系统稳定性的一个李亚普诺夫不等式条件,利用线性矩阵不等式的方法,给出其可容许的一个充要条件.进一步,讨论了如果一个离散正奇异系统存在单项分解,通过构造一个广义李亚普诺夫方程和一个秩条件,给出它可容许的一个充要条件.最
讨论了标准连续线性系统和奇异连续线性系统的半稳定性.半稳定性是对于拥有一个连续平衡状态的系统而言的一种稳定性.它是系统的一个性质,这个性质是指从系统的一个李亚普诺夫稳定平衡状态的邻域内出发的每一条轨线都收敛于一个李亚普诺夫稳定平衡状态(可能是不同的),这个平衡状态不仅依赖于系统本身,同时也依赖于系统的初始状态.因此,半稳定性理论的一个核心概念就是系统的解收敛于一个极限点,这个极限点可能依赖于系统的
本文通过使用拓扑学和范畴论的方法,对双预拓扑空间的连通类和不连通类做了较为深入的研究,得到了许多良好的性质.最后,以不连通类为例,给出几种特殊的双预拓扑空间不连通类的构成.文章的主要内容如下:第1章预备知识.给出本文将要用到的双预拓扑空间以及范畴的基本概念.第2章双预拓扑空间的一个范畴定理.利用范畴论知识,证明了范畴SYTP(即,双预拓扑空间和它们之间的连续映射构成的范畴)是一个拓扑范畴.第3章双
在生态系统中,种群的历史状态为其现在的发展提供了必备信息,这种现象称为时滞干扰现象.时滞现象对生态系统的各种性态会产生较大的影响,这种现象往往通过时滞微分方程给以描述.带有分段常数变量的微分方程近年来引起了研究者的广泛关注.这类方程同时出现了连续和离散变量,具有微分和差分方程的双重性质,在生态数学中具有重要的实际意义.本文讨论了两类具有分段常数变量的时滞单种群模型正平衡态的存在性、唯一性、局部稳定