强场双电离中的电子关联:从多光子到少光子

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:zxy6651
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电子关联是多电子体系中普通存在的现象,它对许多强场过程中起着至关重要的作用。当原子分子与强激光场相互作用时,电子关联效应在双电离和双激发态共振中体现得尤为重要。在早期近红外、中红外激光驱动的多光子双电离研究中发现了双电离产率增强的现象,电子关联在这种现象中起到了决定性的作用。近年来,得益于激光技术的发展,紫外和极紫外激光驱动下的少光子双电离开始受到关注。特别是少光子非次序双电离,由于体现了强烈的电子关联效应,而引发了广泛的研究热潮。在红外和紫外激光场中,双电离的电离机制及电子关联特性有着巨大差异。人们对其中的物理过程的认识还不够清晰——尤其是双电离中的双激发态电子动力学过程。因此本文研究了这两个不同波段下双电离的物理过程,并探究了在双激发态参与下的电子关联现象。在红外和紫外波段,双电离的过程分别对应着多光子和少光子过程。我们对这两个过程分别应用不同的模型进行了理论研究。本文的研究内容和创新点有:(1)系统地研究了红外波段下氩原子多光子非次序双电离对脉宽的依赖。在红外激光场中,电子可能通过再碰撞的方式回到母核形成双激发态。我们通过经典系综模型对双电离进行模拟并得到动量谱。结果表明在短脉宽下电子呈现强关联现象,而在长脉宽下关联性不再明显。我们对双电离中各事件发生的时间进行统计分析,发现影响长短脉宽下不同电子关联行为的决定性因素是碰撞和双电离的时间延迟。我们发现当双激发态双电离占主导地位时,影响双电离电子关联行为的主要因素是延迟以及双激发态双电离所占比重。(2)系统地研究了紫外波段下氦原子少光子双电离中的电子动力学过程。通过量子模型对双电离进行数值模拟,我们发现动量谱中呈现双环和三环分裂现象。通过在缀饰原子图像下对能级进行分析,我们发现当电子从基态被共振双激发时,双激发态能级可能发生双重分裂。当有第三个能级也能被同时共振激发时,双激发能级可能发生三重分裂。这种能级分裂造成了参与共振双电离过程的态的联合拉比振荡。此外,我们指出能级三重分裂源于激发过程中的失谐效应,从而提出了一种用光强来调控电子关联行为的新途径。(3)研究了红外光调制下的极紫外双光子共振双电离过程。我们在动量谱中观察到了径向和角向的干涉结构。通过微扰分析,我们发现这种干涉结构与在双极紫外脉冲作用下的双光子双电离动量谱中的干涉结构有不同的形成机制。通过对微扰模型的修正,我们重复出了干涉结构,并确定此干涉主要源于红外激光对双电离连续态的交流斯塔克效应。我们认为短脉冲下干涉结构的不对称性可能是红外场的条纹效应或者双激发态相关的电离通道之间干涉的结果。
其他文献
目的 分析人工智能(AI)在儿童骨龄X线影像诊断中的应用价值。方法 选择2020年4月至2021年1月期间广东医科大学顺德妇女儿童医院儿童保健科提供的需要X线骨龄诊断的120例儿童左手骨龄片。邀请2名高年资、经验丰富放射科诊断医师采用Greulich-Pyle手腕骨骨龄图谱法(GP图谱法)对儿童左手骨龄进行评测,作为标准组;实验组采用AI评测骨龄,参考标准,比较两组骨龄评测时间,两组左手骨龄、左手
柑橘是世界第一大果树,无核是其作为鲜食水果的优良经济性状之一,而雄性不育是导致果实无核的重要原因。因此,雄性不育机理研究是柑橘品种无核化改良的重要前提。雄性不育胞质杂种‘华柚2号’(G1+HBP)是以胞质雄性不育品种‘国庆1号’温州蜜柑(G1)和可育品种HB柚(HBP)为亲本经原生质体融合创制,遗传上相当于其可育亲本HBP的雄性不育突变体,是研究柑橘雄性不育的理想材料。本研究以‘华柚2号’和HB柚
对称性是物理学中最重要的基本概念之一,PT对称光学系统及其相关应用的研究已经成为非线性光学和量子光学等相关学科领域的前沿问题并取得了许多激动人心的进展。近年来,伴随着光学微腔结构特别是光力系统的发展,PT对称的微腔系统已经在实验上实现并且观测到了一系列传统结构所不能实现的光学效应。PT对称结构相比于传统结构根本的区别就是在于它具有增益,而增益可以用于补偿系统的耗散,并且可以提高腔的品质因子,以致于
细菌生物膜是细菌等病原体在某些不利条件下形成的特殊复合体。与游离的病菌不同,生物膜由于具有丰富的细胞外基质并紧紧的粘附于复用医疗器械及组织表面,传统的抗生素等理化治疗手段很难有效的由外而内作用到菌体本身,此外也造成了外伤难以愈合及植入物排异等医疗方面的不良后果。金属有机框架材料MOFs(Metal-Organic Frameworks)具有非常高的孔隙率、广泛的催化性能以及化学稳定性等优良特性,广
当前水体磷污染问题日益突出,严重威胁着生态安全和人类健康。生物炭作为一种稳定的多孔芳构化炭质材料,具有良好的吸附能力,用于磷回收,不仅能“以废治废”,负载磷后的生物炭还可生产炭基缓释肥,用于节肥改土,增加碳汇,实现磷、碳的生态循环。但现有工程生物炭用于磷回收仍存在吸附负载容量偏小、吸附效率不高等技术瓶颈,极大地限制了该技术的推广应用。通过对生物炭进行钙、氮杂原子缺陷结构构筑,改变生物炭表面吸附活性
第一部分ITK-SYK融合基因过表达载体构建以及细胞转染目的:ITK-SYK是非特指外周T淋巴瘤中最新发现的一种融合基因,对外周T淋巴瘤的发生发展有着重要作用。我们通过构建ITK-SYK融合基因的过表达慢病毒载体,转染Jurkat细胞使其表达SYK融合蛋白。同时观察慢病毒载体感染Jurkat细胞后的生物学行为变化。方法:用PCR方法分别扩增ITK,SYK基因片段,然后采用Fusion PCR方法将
泛素化是真核细胞中普遍存在的蛋白质翻译后修饰现象,具有介导蛋白质降解、定位、激活等多种功能。泛素化过程由一系列酶催化,E3泛素连接酶是直接介导泛素向底物蛋白转移的酶,在泛素化的特异性方面发挥重要作用。人类存在600多种E3,调控成百上千种底物蛋白的泛素化,参与广泛的生命活动。HECT型、RING型和RBR型是泛素连接酶E3的三大类型,其中RING型E3研究最多,对其机制的了解也最为深入,而RBR型
近三十多年来将数学中拓扑的概念引入物理学后,科学家们提出了一种全新的材料-拓扑量子材料。拓扑量子材料拥有独特的能带结构,会展现出对样品细节不敏感的拓扑性质。自单层石墨烯预言存在量子自旋霍尔效应后,不同的拓扑量子材料被陆续地预言以及证实。包括拓扑绝缘体、拓扑超导以及拓扑半金属等。这些材料具有丰富的物性特征以及新奇的电磁输运现象,对发展低能耗自旋电子学器件、拓扑量子计算具有重大意义。扫描隧道显微镜是一
自然界中普遍存在着磷与矿物强烈相互作用的现象,发生表面吸附或者沉淀反应。高度风化的南方土壤是众多次生矿物的集合体,其表面活性大,亲和力高,土壤磷大多被其中的铁铝氧化物等矿物吸附固定,形成矿物结合态磷,并在氧化铁的包被作用下,进一步转化为闭蓄态磷,导致磷的有效性显著降低。中国南方地处亚热带及热带季风气候区,稻田水旱轮作系统作为典型干湿交替耕作方式,导致土壤产生了物理、化学和生物学等变化,从而深刻影响
磁性材料因其中存在自旋-自旋、自旋-轨道等复杂的相互作用,使其表现出丰富的物理性质,成为近年来普遍关注的功能材料。本论文以过渡金属氧化物为研究对象,就负磁化效应和磁热效应这两类既具有基础研究意义又具有重要应用的效应进行研究,论文的主要工作和创新点概述如下:(1)使用溶胶-凝胶法并经过适当的退火处理制备了名义组分为YCr1-xMnxO3的钙钛矿结构的Mn掺杂Y-Cr基过渡金属氧化物材料。研究表明,适