论文部分内容阅读
原油蒸馏过程是炼油厂及大型石油化工企业的龙头。常减压塔是实现蒸馏过程的重要设备,其生产水平的高低直接影响着原油的利用率和企业的经济效益。本文选择了在原油蒸馏过程中有重要作用的减压蒸馏塔作为研究对象。在了解了工艺流程和原油蒸馏原理的基础之上,分析了影响粘度和闪点的主要因素,从而利用遗传算法优化的对角神经网络(Diagonal Recurrent Neural Network-DRNN)建立了减压塔减三线的粘度和闪点的软测量仪表。仿真结果表明,所建软测量仪表精度很高,可替代质量分析仪表。由于减压塔减三线是减压塔各侧线中最重要的,因此本文仅作减三线温度系统的控制方案并利用遗传算法优化的DRNN神经网络建立了减三线温度系统的神经网络模型。由于温度与质量有一一对应关系,因此控制好温度也就间接的控制好了产品的质量。在蒸馏系统中,是通过控制侧线抽出量来控制侧线温度。在仔细分析了减压塔的工艺特点及实际生产方案后,本文采用神经网络自适应控制技术对减压塔减三线温度系统进行控制。仿真结果表明,控制效果很好,完全达到控制要求。