论文部分内容阅读
金融市场风险管理是金融实务界、学术界和监管局的重大课题和任务。风险价值(Value-at-Risk,VaR)是最近金融研究的一个重要方向,它是一种以统计方法度量市场风险的手段,是指在给定一个时间周期和置信水平下,预期最大损失的测量。由于它不具有次可加性、凸性等特征,使得条件风险价值(Conditional Value-at-Risk,CVaR)的研究引起了许多学者的兴趣。CVaR是指损失额超过VaR部分的期望损失值或平均损失值。它不仅具有VaR模型的优点,同时在实际应用中更为实用合理,因而得到越来越广泛的应用。VaR和CVaR,尤其是后者,已成为当今金融评估的重要参数。本文重点研究了基于遗传算法的CVaR模型在投资组合中的应用问题,取得的研究成果主要有以下几点:(1)针对CVaR模型当中各期损失函数通常比较复杂,线性的损失函数在现实当中可能难以准确描述实际损失的问题,提出了损失函数为一般非线性函数情形的CVaR模型。(2)设计了一种改进的遗传算法求解新的CVaR模型,并随机选取十支证券进行实例化分析,结果表明:新的模型能够同时降低CVaR和VaR两个重要风险度量指标,有效降低风险。(3)分析了投资组合风险构成,针对边际CVaR、成分CVaR和增量CVaR等风险分析方法在调整投资组合中各资产定量分析方面的不足,提出一种风险规避模型,并给出了实例化分析,实验证明了风险规避模型能够在保证原有收益不变的前提下,降低投资组合的风险值。