论文部分内容阅读
Ti5Si3具有高熔点、高硬度、低密度、耐腐蚀等诸多优异性能,对其开展高温腐蚀环境下的高效吸音、传热和过滤行业的研究,具有一定的理论意义与实际应用价值。本课题以制备新型过滤材料为研究背景,首次采用限域内原位反应烧结工艺,以Ti粉和高纯石英管为原料,制备了Ti-Ti5Si3复合梯度多孔材料,证明了该成形技术的可行性。通过SEM对多孔材料孔结构进行分析,发现:制备的Ti-Ti5Si3复合梯度多孔材料基体孔隙尺寸为10~50μm;膜层孔隙尺寸为0.1~0.3μm,厚度1~3μm,且膜层孔隙为连通孔。对制备的梯度多孔膜层进行了X射线衍射及EDS分析,确定了原位反应生成的多孔膜层物相成分主相为Ti5Si3相,次相为Ti Si相、Ti O2相。通过对孔隙性能进行实验数据分析,发现制备的Ti-Ti5Si3复合梯度多孔材料随着原始Ti粉粒径减小、烧结温度升高以及保温时间延长,其最大冒泡点孔径呈减小趋势,且最大冒泡点孔径最小可到7.3μm;相对于多孔钛,其相对透气系数呈降低趋势,最小为35.83 m3/h·k Pa·m2,缩减率为45.84%;其相对渗透系数同样呈降低趋势,最小为9.29m3/h·k Pa·m2,缩减率为62.6%。通过材料的热膨胀性能测试,证明金属钛多孔试样的线膨胀系数远远大于石英管。因此,在原位反应烧结过程中,石英管内壁对金属钛多孔生坯产生烧结压应力,此应力有利于生坯表面原位反应的进行,该烧结过程类似于传统意义上的加压原位反应烧结。由于Ti-Si系金属间化合物中Ti5Si3相化学性质最稳定,如果烧结过程中原位反应进行充分,最终获得的多孔膜层成分将是富钛硅化物Ti5Si3相。