一类指数型分形插值函数

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:gzw39
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
美国数学家 Barns1ey于1986年基于迭代函数系理论首先提出了分形插值函数的概念,对非光滑曲线、曲面的拟合等研究提供了新的方法,并取得了巨大的成功。本文主要对Fij(x,y,z)=ψ(z)·φ(x,y)力形式的迭代函数系进行讨论,并构造了一类多参数指数型迭代函数系,内容如下:   第一章,回顾了分形理论的产生、发展,概括了本课题的研究现状,本文的主要内容及创新点;   第二章,介绍了几种常见的维数,迭代函数系和分形插值理论,以及分形插值曲线的计盒维数;   第三章,构造了Fij(x,y,z)=ψ(z)·φ(x,y)形式的迭代函数系,证明了它的吸引子的存在性,在边界插值点共线的条件下证明了它的吸引子是某连续分形函数的图像。通过变差性质的讨论,给出了插值曲面维数的上界估计。   第四章,给出了一类多参数指数型迭代函数系统,证明了在一定条件下它的吸引子的存在性,且该吸引子是某分形插值函数的图像,证明了插值曲面对参数的连续依赖性,给出了插值曲面维数的计算公式,最后应用实际数据进行了分形插值曲面的实例研究,对于研究一些复杂的几何体提供了理论基础和实用方法。
其他文献
自华罗庚上个世纪40年代开创矩阵几何这一数学方向以来,中外数学家在长方矩阵几何的条件化简与等价条件方面取得了很多成果。2004年,黄文玲和万哲先证明了体上长方矩阵几何中的
偏微分方程边值问题有着广泛的实际来源和理论应用,本文主要研究偏微分边值问题解的存在唯一性,共分三章.第一章,主要介绍了偏微分方程边值问题有关解存在性研究历史及现状.
本文对约束半无限规划问题(CSP)和半无限极大极小问题(MMP)的求解算法进行研究,主要内容如下:   第二章基于离散技术,结合对角稀疏修正拟牛顿技巧,建立了初始点任意的求解
近年来的数值解法的奇异摄动边界值问题得到了广泛的关注,但是连续有限元方法在处理复杂边界层问题有自身的不足和缺点,间断有限元方法却既保持了有限元法(FEM)和有限体积法(FV
学位
大型露天矿山实施爆破作业,一般炸药使用量都很大,一次使用的炸药量少则数吨,多则数十吨,甚至可达数百吨。因此,在大型露天采场实施爆破时,所 Large-scale opencast mining
本文的主要内容可概括如下:   第一章中,针对Banach空间的一类非线性变分包含问题,将文献中Hilbert空间的A-极大单调映射进行一般推广,提出了Banach空间的(A,η)-极大增生
极大子群是有限群的一类非常重要的子群,在有群论的结构研究中有重要的作用,许多群论学者都做过这方面的研究,得到了若干关于有限群结构的经典结果,如:著名的Huppert定理,有限群G为
红利分配问题自从上世纪以来一直都是金融保险研究的一个热点问题,它主要来源于对公司金融/财务决策问题的研究。De Finetti最先提出以最大化破产前的期望累积折现分红作为保
矩阵几何是数学家华罗庚于20世纪40年代中期由于研究多元复变函数论的需要所开创的一个数学领域.万哲先、黄礼平等学者证明了任意域上对称矩阵几何基本定理以及特征不等于2的