【摘 要】
:
为了提高抗肿瘤药物利用率,增强抗肿瘤治疗效果,基于靶向药物载体的研究受到科研人员的广泛关注。然而,目前许多药物载体仍然存在着靶向性不足、载药率低、细胞毒性大和功能性单一等缺点。因此,设计出一种具有良好生物相容性、肿瘤特异性强和载药量高的理想载体具有重大意义。木质素是天然有机高分子化合物,来源广泛,生物相容性高,其结构中含有大量的活性基团,有利于化学改性并用于负载药物。基于此,本论文通过反相乳液交联
【基金项目】
:
广东省自然科学基金(2022A1515010757); 科技部重点研发项目(2018YFB1501503); 广东省重点研发项目(2020B1111380002);
论文部分内容阅读
为了提高抗肿瘤药物利用率,增强抗肿瘤治疗效果,基于靶向药物载体的研究受到科研人员的广泛关注。然而,目前许多药物载体仍然存在着靶向性不足、载药率低、细胞毒性大和功能性单一等缺点。因此,设计出一种具有良好生物相容性、肿瘤特异性强和载药量高的理想载体具有重大意义。木质素是天然有机高分子化合物,来源广泛,生物相容性高,其结构中含有大量的活性基团,有利于化学改性并用于负载药物。基于此,本论文通过反相乳液交联法,采用磁性材料(纳米Fe3O4)、工业木质素为主要材料制备了两种磁性纳米粒子,并用于负载盐酸阿霉素(DOX),在药物载体领域具有较大的应用潜力。本工作首先将木质素磺酸钠(LS)通过曼尼希改性反应对其进行胺化改性,引入叔胺基团,得到一种具有p H响应性的胺化木质素磺酸钠(ALS)。FT-IR、Zeta电位、元素分析等表征手段表明叔胺接枝成功,等电点接近于2。通过反相乳液交联法,将ALS和纳米Fe3O4复合,得到p H响应型木质素Fe3O4/ALS磁性纳米粒子。研究了不同木质素浓度对复合磁性粒子的粒径和形貌影响,研究结果表明,当选择ALS浓度为0.002g/ml时,Fe3O4/ALS的粒径处于药物载体理想粒径范围,10-200nm。对Fe3O4/ALS的形貌粒径、结构以及磁学性能进行了表征,表明Fe3O4/ALS呈球形,粒径绝大多数集中在108.0-146.1nm,饱和磁化强度为34.05 emu.g-1,具有良好的p H响应性,等电点接近3。研究了Fe3O4/ALS对DOX的载药和释药性能,平均载药量为11.04%,在p H 5.3条件下,药物累积释放量为33.66%。进一步地,为了提高磁性纳米粒子的p H响应性和载药率,以Fe3O4、ALS和羧甲基壳聚糖(CMCS)进行复合,得到p H响应型Fe3O4/CMCS/ALS磁性纳米粒子。研究了ALS的作用以及化学反应过程中最佳乳化剂用量、交联剂用量,分别为0.057g/ml和0.135mol/L。对Fe3O4/CMCS/ALS进行了形貌粒径表征、结构分析和磁学性能分析以及载药释药性能研究,研究表明Fe3O4/CMCS/ALS呈球形,粒径主要分布于79.9-169.9nm,饱和磁化强度为20.6emu.g-1,等电点接近于4。载药量为48.68%,是Fe3O4/ALS的4.4倍。在p H 5.3条件下,药物累积释放量为56.71%,相较于Fe3O4/ALS提升68.48%。通过MTT法和Live/dead染色实验可知,两种载药粒子对癌细胞存在明显的生长抑制。本论文的研究成果将对药物载体的制备和肿瘤的靶向治疗提供一定价值的数据及参考。
其他文献
背景:临床上,缺氧是多种疾病导致组织病理改变的共同始发因素,也是造成神经系统功能障碍的重要因素。由于疫情的日常化,长时间的佩戴口罩,导致吸入氧减少,动脉血氧分压降低,产生轻微的乏氧现象,严重者会出现明显身体上的不适。此外,高原游已成为近年来大家向往的旅游热点地区。当高原平均海拔在4000米以上时,就会出现空气稀薄,含氧量低的状况,而脑组织是机体对缺氧最为敏感的靶器官,在缺氧环境中很容易受到“伤害”
前交叉韧带(anterior cruciate ligament,ACL)的解剖重建技术是伴随着ACL解剖学理论的发展而形成的一种技术。通过ACL的解剖结构特点来实施功能重建,使修复后的ACL大小恢复到最原始大小,ACL的走行方向恢复到与原始走行方向一致,并使ACL止点的位置得到复原。非解剖等长重建、单束重建、双束重建是ACL解剖重建的三种方法。本研究致力于探讨关节镜下前交叉韧带非解剖等长重建、解
道路运输作为五大主要运输方式之一,其系统运行效率关系到政府规划、行业发展、企业运营以及个体需求多个层面。道路运输效率是衡量国家和地区运输发展水平的重要指标,为了提高交通运输业的服务水平,加快供给侧结构改革,促进我国经济的可持续发展,需要对各阶段的效率进行评价并提出建议。在我国建设交通强国的战略背景下,评价道路运输效率使运输资源与日益增加的客货运输需求相匹配,对掌握道路运输发展现状、推动道路运输服务
羟氯喹(HCQ)属于喹啉类生物碱,BSC分类中的Ⅱ类药物,具有低溶解性高渗透性的特点,是一种用于治疗疟疾和风湿疾病的重要药物。羟氯喹的药用成盐形式有磷酸盐和硫酸盐等形式,能有效提高其在水中的溶解性,然而发现成盐后引湿性较强,且容易在吸水后发生解离,生成羟氯喹和腐蚀性硫酸,给硫酸羟氯喹在生产以及储存等方面带来困难。本文通过药物共晶改性方法,针对上述问题开展羟氯喹共晶制备研究,为新型羟氯喹药物的开发提
目的:探讨腰骶部移行椎与腰椎间盘突出及下腰痛的临床相关性,为临床上腰骶部移行椎引起下腰痛的诊断及治疗提供依据。方法:本研究中所有病例的影像资料均在本院医学影像信息系统(picture archiving and communication system,PACS)上直接测量与评估。由两名影像科医生及一名骨科医生综合评价,以上医生均具备主治医师以上资格。在PACS系统上利用多平面重建(multi-p
随着工业化进展不断深入,同时也伴随着环境问题愈加严重。污染物和病原体微生物在水体中不断累积,对人类的生活造成了极大的危害。开发一种新型高效的抗菌手段不仅意义重大而且及其必要。半导体光催化技术作为一种能够有效利用太阳能的手段,受到了广泛的关注,其中利用光催化进行抗菌是利用光催化过程中氧化还原反应产生的活性物种,对水体中污染物和病原体微生物分别进行降解和灭活。氧掺杂氮化碳作为一种二维的片状材料,且表面
淡水作为渔船系统的基本保障,一方面供应船员的生活用水,另一方面保障船舶的正常运转,如用作缸套冷却水等。常用的从港口携带淡水的方式既挤占生产空间又难以维持长期海上作业,而海水淡化能有效解决该问题。相比于传统海水淡化技术,膜蒸馏技术作为一种新型的分离方法,具有无需真空或高压、结构简单等优势而备受业界关注。针对膜蒸馏海水淡化技术存在能耗高的问题,本文搭建了首台中试规模的渔船柴油机排气余热驱动的中空纤维膜
汽车自动驾驶技术近年来发展迅速。随着无线通信技术进步,车辆智能化也由单车智能朝着网联化和车路协同方向发展。车路协同技术在超视距变时空感知、交通参与者高效交互协作等领域对自动驾驶将发挥独特作用。路侧感知系统作为车联网重要组成部分,如何依托于较低算力边缘计算平台高效形成结构化数据,实现超视距感知信息准确实时共享,解决单车视距局限等问题已成为亟需攻克的难题。本文依托河北省重点研发计划项目“基于C-V2X
为应对市场需求动态变化、产品种类增加和产品生命周期缩短等挑战,可重构制造系统(Reconfigurable manufacturing system,简称RMS)作为新一代制造系统,利用构型重构的方式可以快速和有效改变生产能力和功能,是未来制造系统的先进范式之一。与传统制造系统的设计基础不同,RMS围绕产品族而构建,目标是维护同一产品族内多种产品变化体的灵活性和生产效率之间的平衡。针对现有RMS设
矿业生产中经选矿后留下的尾矿不仅占用土地资源,还会氧化产生酸性矿山废水和重金属污染,是目前环境污染治理的一个难题。表面钝化法可从源头控制尾矿污染,极具前景。硅烷钝化剂因其安全环保、效率高等优点受到广泛关注,但在实际使用时还存在诸多问题,如大量使用有机溶剂、高温固化和长效性不佳等。为了提高钝化膜的长效性,并减少乙醇的使用量,使其更适用于工业生产,本文研究了在低醇溶剂条件下制备3-巯丙基三甲氧基硅烷(