大采高综采煤壁滑移片帮机理及控制研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:zzjkan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大采高综采因其适用性强和工艺简单等优势,已成为我国厚煤层开采的主要方法之一。然而随着开采深度的增加和开采高度的加大,大采高综采煤壁片帮问题更加突出,严重地制约了工作面安全、高效生产。大采高综采煤壁片帮以斜直线型和圆弧型滑移为主,占比80%以上。现有成果多采用滑动体理论研究两种片帮的破坏机理及影响因素,但是在研究过程中,存在煤壁稳定性安全系数变化规律不明、最大滑移深度及最危险滑移面难以预测等问题,由此对工程实际中煤壁片帮控制带来了困难。鉴此,本文采用现场观测、理论推导、实验室试验和数值模拟相结合的方法,以红庆河煤矿3-1101工作面为背景,对大采高综采面煤壁斜直线型和圆弧型滑移面安全系数的变化规律、煤壁最危险滑移面与极限平衡滑移面的位置,液压支架初撑力、护帮高度和护帮板水平推力对工作面煤壁稳定性的影响规律,弱化顶板控制煤壁片帮机理等问题展开了系统研究。论文的主要工作和取得的主要成果如下:(1)考虑工作面煤壁受力特征,采用极限平衡分析精确解法建立了煤壁斜直线型滑移片帮的力学模型,并推导了其安全系数计算的数学模型,得出了滑移面安全系数随滑移面位置的变化规律,据此提出了确定斜直线型极限滑移深度和最危险滑移深度的方法,并通过现场实测验证了片帮深度预测方法和安全系数数学模型的准确性。结果表明:沿着煤壁深度方向,滑移面安全系数随滑移面深度的增加呈先减小后增大的变化规律;沿着煤壁高度方向,随着滑移面起点从底板向顶板移动,煤壁滑移面的安全系数呈先减小后增大的变化规律,最小安全系数位置(即最危险滑移面位置)始终出现在距底板0.31倍采高处,不受开采因素的影响。根据滑移面安全系数变化规律得到红庆河煤矿3-1101工作面斜直线型滑移面最小安全系数为0.9277,对应的最危险滑移深度为0.90 m,最大滑移深度为2.12 m。与已有压剪式算法和滑落式算法等最大片帮深度预测方法相比较,其结果更接近现场实测的最大片帮深度2.08 m。煤壁最小安全系数数值随煤体内聚力和内摩擦角的增大分别呈线性规律和指数规律增加,随埋深和采高均呈对数规律降低,并且根据增幅得出了内聚力和埋深对斜直线型滑移面最小安全系数的影响较为显著。(2)考虑工作面煤壁受力特征,采用简化Bishop条分法建立了煤壁圆弧型滑移片帮的力学模型,并推导了其安全系数计算的数学模型,得出了安全系数的分布规律,据此提出了确定煤壁圆弧型极限滑移深度和最危险滑移深度的方法,并通过现场实测验证了片帮深度预测方法和安全系数数学模型的准确性。结果表明:在煤壁深度方向上,煤壁滑移面安全系数随滑移面深度的增加呈先减小后增大的规律。根据安全系数分布规律得出了红庆河煤矿3-1101工作面圆弧型最大滑移片帮深度为2.2 m,与已有压剪式算法和滑落式算法等最大片帮深度预测方法相比较,更接近现场实测的最大片帮深度2.25 m。煤壁圆弧型滑移面最小安全系数随煤的内聚力的增加呈线性规律增大,随煤的内摩擦角的增加呈二次项式规律增大,随煤层埋深和采高的增加均呈对数规律降低。当采用仰斜开采时,随煤层倾角的增加呈线性规律降低;当采用俯斜开采时,随煤层倾角的增加呈线性规律增大。(3)采用FLAC3D数值模拟软件,模拟分析了液压支架初撑力、护帮高度和护帮板水平推力对煤壁稳定性的影响规律,揭示了支架护帮板支护参数与支架初撑力维护煤壁稳定性的机理。结果表明:当支架初撑力由0 k N提升到12000 k N后,煤壁超前支承压力峰值降低了16.8%,煤壁破坏面积降低了27.78%,煤壁水平变形量降低了21.33%。说明提高支架初撑力可减小顶板下沉量,改变超前支承压力分布,减小煤壁破坏面积和水平变形量。提高护帮高度和护帮板水平推力,可有效减小煤壁水平变形量,但是煤壁支承压力以及破坏面积的减少甚微,表明提高护帮板支护是通过对煤壁的横向变形进行干预,使其变回三向受力状态,从而提高煤壁稳定性。提升初撑力是通过减小煤壁承受载荷以维护煤壁稳定,提升护帮板支护通过减小煤壁水平变形以维护煤壁稳定。(4)基于强度折减理论,采用FLAC3D数值模拟软件计算了煤壁稳定系数,并定量地研究了煤壁稳定性与液压支架初撑力、护帮高度与护帮板推力之间的关系。结果表明:在任意给定初撑力条件下,煤壁最小安全系数与护帮高度和护帮板推力均呈正相关关系,且每组护帮高度和护帮板推力对应一个滑移面最小安全系数,据此,可为液压支架选型以及护帮板优化提供定量指标。(5)基于温克尔弹性地基梁理论和基本顶断裂结构“砌体梁”理论,分别揭示了直接顶和基本顶注水控制片帮的机理,并用数值模拟验证了顶板注水方法的良好效果。结果表明:直接顶在注水后弹性模量降低,根据弹性地基梁理论建立煤壁与顶板的受力模型,分析后可得出直接顶的软化会使煤壁上方支承压力峰值向煤壁内部转移且支承压力整体下降,从而提升煤壁稳定性。初采期的基本顶在开切眼注水预裂后由固支梁受力状态转化为简支梁受力状态,初次断裂步距会大幅缩短,煤壁支承压力也随之降低;基本顶初次断裂后,在巷道中对基本顶进行超前预裂,可以降低基本顶的断裂步距和回转量,从而降低顶板施加在工作面煤壁的压力,达到控制片帮的目的。与“顶板未处理”相比较,当使用“顶板注水处理”方法后,支承压力峰值降低了17.82%,峰值位置距煤壁表面的距离增加了40%,煤壁破坏面积降低了26.92%,煤壁滑移面最小安全系数提高了19.67%。
其他文献
针对目前广泛应用的水力压裂在岩性与结构复杂、黏土类矿物含量高、塑性强的煤系复合储层中遇到层界面时,裂缝易出现钝化、“T”型或“工”字型扩展等难穿层问题,提出了采用具有压力峰值高、压力传递速度快的高能气体冲击压裂方法进行穿层压裂的研究思路。重点采用理论分析与数值模拟相结合的方法,系统研究了煤系复合储层的地质条件、高能气体冲击参量及其对冲击压裂缝穿层扩展的影响规律与机理。研究成果将为煤系复合储层穿层压
双相不锈钢兼有奥氏体不锈钢和铁素体不锈钢的特点,具有高强度、良好的耐蚀性以及优越的焊接性能,是一种重要的结构材料;与拥有相近性能的超级奥氏体不锈钢和镍基合金材料相比,由于在成分上以氮代镍,具有成本优势,是一种资源节约型不锈钢。同时,双相不锈钢的设计使用寿命长,服役周期成本低。该类合金已广泛应用于化学品船、油气田、烟气脱硫、海水淡化等工业领域中,市场潜力巨大。S32750属于第三代双相不锈钢,是超级
油页岩是一种潜在的能源,未来可作为石油和天然气的补充和替代能源。本文主要围绕原位注热开采油页岩过程中砂质泥岩盖层的稳定性展开研究,考虑砂质泥岩的物理力学性质具有显著各向异性,利用热膨胀仪、导热测定仪、低渗岩石渗透率测量装置、高温三轴岩石渗透率测量设备以及高温岩石压力机等设备,研究高温作用下各向异性砂质泥岩的热膨胀系数、导热系数、渗透率和力学参数(弹性模量E、抗压强度σp、抗拉强度σt、内聚力c和摩
煤层气作为一种非常规天然气资源,是改善我国一次能源消费结构的重要清洁能源。然而,由于煤层气储层渗透性较低,通常需采用压裂技术对储层进行增渗改造。目前,对煤层气的开采大多是照搬石油行业中的压裂工艺技术及参数,但与石油储层脆性特征相比,煤层气储层通常呈现“碎软”特性,其破坏形式表现为韧性破坏,即应力峰值后存在明显的应变软化区。已有压裂工艺,无论是垂直井,还是水平井,其在脆性度高的储层中压裂效果较好,但
近年来,机械响应荧光材料(MRL)在力传感、信息存储、显示等领域显示出巨大的应用潜力。其中,具有推-拉型结构的机械响应有机荧光小分子材料,可以通过选择不同种类的电子给体和电子受体来对分子结构进行灵活的调控,极大地提高了分子的多样性,从而受到研究人员的广泛关注。然而,如何提高MRL材料力响应信号的对比度,拓展它们在力检测和信息存储等方面的应用还需要进行深入的研究。为了提高MRL材料力响应信号的对比度
镁合金因其轻质、减震性好等优点,广泛应用于航空航天、交通运输以及电子通讯等领域。然而,许多构件,如飞机蒙皮、汽车覆盖件等,在要求材料轻质的同时,也要求其具有足够的强度和刚度。单一镁合金板难以满足高强度和高刚度的要求,严重限制了其进一步的应用。本文分别选用不锈钢和碳纤维作为复合增强体,制备两类高强度高刚度镁基层合板:首先选取强度刚度较高的304奥氏体不锈钢(ASS)为外层覆板,选取1060铝合金为过
6.25 m捣固焦炉成套设备是焦化生产中广泛使用的先进的机械设备,该设备的使用对于提高焦炭产量、降低能耗、减少污染物的排放具有明显的经济效益和社会效益。推焦装置作为该成套设备的核心部件,在使用过程中存在明显的振动现象,该振动不仅会影响推焦设备的正常工作和使用,还可能导致焦饼坍塌,造成设备停机无法工作。因而,深入研究推焦装置的振动机理对于减轻推焦装置的振动具有十分重要的理论和工程应用价值。推焦装置工
作为能源革命的排头兵,提高煤系气采收率是山西“十四五”及今后更长一个时期的重要工作。煤系气储层具有薄层状、多岩性互层和塑性较强等特点,且在不同区域和不同层位形成了不同组合类型,为高效压裂提高抽采带来了很大困难。已有工作多使用水力压裂进行单一储层致裂,造成资源动用程度低、煤系气合采效果不尽理想等问题。针对不同煤系气储层类型采取适应性致裂方法将是煤系气合压共采的发展趋势。通过现场调研、数据统计、理论分
我国能源资源禀赋特点及保障能源安全战略决定了煤炭在未来较长一段时期内仍将是我国重要的基础能源。如何清洁、高效、高值转化利用储量丰富但又尚未规模开采的中低变质程度煤是一个不容忽视的重要课题。近年来,基于物质分级转化、能量梯级利用的多联产系统技术,中低变质程度煤分级高附加值转化利用得到广大研究者的认可和政府推广。本学位论文研究工作主要针对中低变质程度煤热解焦油的化学组成结构特点,设计高效高值转化利用合
传统陶瓷颗粒增强Al基复合材料存在颗粒-基体界面润湿性差、界面结合强度低及颗粒与基体塑性变形协调能力差等问题,导致陶瓷颗粒在提高材料强度的同时严重恶化了材料的塑性。高熵合金(HEA)颗粒与Al基体良好的界面润湿性以及高强度、高硬度和良好的热稳定性展现出其作为一种新型强化相的巨大潜力。论文提出以Al Co Cr Fe Ni HEA颗粒为强化相、5083Al合金为基体,利用放电等离子烧结技术(SPS)